tvanderpol

tvanderpol

Genetic Algorithms in Elixir: First stab at Ch1 algorithm converges just fine? (p28)

I’ve got something of the opposite of the usual problem - my code doesn’t fail in the way the text suggests it should (when it suggests premature convergence is the cause).

I’ve ran the code a fair bit and did some debug print injecting and such but I can’t really see anything out of the ordinary - it converges on the correct answer almost instantly if I run it without any additional debug and it takes a reasonable amount of generations from what I can tell by poking at it.

Now I am clear to continue the chapter as-is, and I understand the argument being made, but I don’t understand how the algorithm is meant to fail (I do in the abstract but I mean the code as written) and that’s bugging me.

Marked As Solved

seanmor5

seanmor5

Author of Genetic Algorithms in Elixir

There was a mistake in my version of the code that forced early convergence with smaller populations that isn’t present in the book’s transcription of the code.

To better demonstrate premature convergence: set chromosome size to 1000 and population size to 100. You’ll notice your version without mutation converges much slower than with mutation. You can continue to decrease the population size further and further and you’ll reach a point where progress completely stops.

Sorry about the confusion!

Also Liked

christhekeele

christhekeele

This was on quite a new Macbook, which may be influencing results from what’s expected.

MacBook Pro (16-inch, 2019)
2.4 GHz 8-Core Intel Core i9
32 GB 2667 MHz DDR4
Erlang/OTP 22 [erts-10.7.2] [64-bit] [smp:16:16]
Elixir 1.10.3

tvanderpol

tvanderpol

Perfect, thank you for responding so fast! That helps my understanding of exactly how it fails a lot.

christhekeele

christhekeele

I noticed this in the B1 edition as well!

Re:

$ elixir one_max.exs
Current Best: 32

But wait, what’s going on here? Why is the algorithm stopping on a best fitness below 42? No matter how many times you run it, the algorithm will almost always certainly stop improving below 42. The problem is premature convergence.

At this point, the chapter’s example code looks like:

Code to Date
population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)

evaluate = fn population ->
  Enum.sort_by(population, &Enum.sum(&1), &>=/2)
end

selection = fn population ->
  population
  |> Enum.chunk_every(2)
  |> Enum.map(&List.to_tuple(&1))
end

crossover = fn population ->
  Enum.reduce(population, [], fn {p1, p2}, acc ->
    cx_point = :rand.uniform(42)
    {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
    [h1 ++ t2 | [h2 ++ t1 | acc]]
  end)
end

algorithm = fn population, algorithm ->
  best = Enum.max_by(population, &Enum.sum(&1))
  IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
  if Enum.sum(best) == 42 do
    best
  else
    population
    |> evaluate.()
    |> selection.()
    |> crossover.()
    |> algorithm.(algorithm)
  end
end

solution = algorithm.(population, algorithm)
IO.write("\n Answer is \n")
IO.inspect solution

I parameterized it thusly:

Tunable version
-population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)
+problem_size = 42
+population_size = 100
+
+population = for _ <- 1..population_size, do: for _ <- 1..problem_size, do: Enum.random(0..1)

 evaluate = fn population ->
   Enum.sort_by(population, &Enum.sum(&1), &>=/2)
 end

 selection = fn population ->
   population
   |> Enum.chunk_every(2)
   |> Enum.map(&List.to_tuple(&1))
 end

 crossover = fn population ->
   Enum.reduce(population, [], fn {p1, p2}, acc ->
-    cx_point = :rand.uniform(42)
+    cx_point = :rand.uniform(problem_size)
     {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
     [h1 ++ t2 | [h2 ++ t1 | acc]]
   end)
 end

 algorithm = fn population, algorithm ->
   best = Enum.max_by(population, &Enum.sum(&1))
   IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
-  if Enum.sum(best) == 42 do
+  if Enum.sum(best) == problem_size do
     best
   else
     population
     |> evaluate.()
     |> selection.()
     |> crossover.()
     |> algorithm.(algorithm)
   end
 end

 solution = algorithm.(population, algorithm)
 IO.write("\n Answer is \n")
 IO.inspect solution

In my experimentation, with problem_size = 42, not only did population_size = 100 always converge on the best answer, but even as low as population_size = 8 consistently converged. I started seeing the need for mutation around population_size = 6, which normally gets stuck around 35.

Alternatively, increasing the size of the problem to problem_size = 420 usually converged correctly, but with enough time to watch things work. problem_size = 4200 consistently gets stuck around 2400, as the narrative of the chapter wants it to.

Popular Prag Prog topics Top

ianwillie
Hello Brian, I have some problems with running the code in your book. I like the style of the book very much and I have learnt a lot as...
New
yulkin
your book suggests to use Image.toByteData() to convert image to bytes, however I get the following error: "the getter ‘toByteData’ isn’t...
New
lirux
Hi Jamis, I think there’s an issue with a test on chapter 6. I own the ebook, version P1.0 Feb. 2019. This test doesn’t pass for me: ...
New
fynn
This is as much a suggestion as a question, as a note for others. Locally the SGP30 wasn’t available, so I ordered a SGP40. On page 53, ...
New
jskubick
I think I might have found a problem involving SwitchCompat, thumbTint, and trackTint. As entered, the SwitchCompat changes color to hol...
New
Charles
In general, the book isn’t yet updated for Phoenix version 1.6. On page 18 of the book, the authors indicate that an auto generated of ro...
New
brunogirin
When running tox for the first time, I got the following error: ERROR: InterpreterNotFound: python3.10 I realised that I was running ...
New
New
creminology
Skimming ahead, much of the following is explained in Chapter 3, but new readers (like me!) will hit a roadblock in Chapter 2 with their ...
New
bjnord
Hello @herbert ! Trying to get the very first “Hello, Bracket Terminal!" example to run (p. 53). I develop on an Amazon EC2 instance runn...
New

Other popular topics Top

PragmaticBookshelf
A PragProg Hero’s Journey with Brian P. Hogan @bphogan Have you ever worried that your only legacy will be in the form of legacy...
New
PragmaticBookshelf
Rust is an exciting new programming language combining the power of C with memory safety, fearless concurrency, and productivity boosters...
New
AstonJ
Just done a fresh install of macOS Big Sur and on installing Erlang I am getting: asdf install erlang 23.1.2 Configure failed. checking ...
New
AstonJ
I ended up cancelling my Moonlander order as I think it’s just going to be a bit too bulky for me. I think the Planck and the Preonic (o...
New
AstonJ
I have seen the keycaps I want - they are due for a group-buy this week but won’t be delivered until October next year!!! :rofl: The Ser...
New
Rainer
Not sure if following fits exactly this thread, or if we should have a hobby thread… For many years I’m designing and building model air...
New
OvermindDL1
Woooooooo! This is such a huge release for it, and 2 years incoming! In short, the library is now using an updated hyper backend (not j...
New
PragmaticBookshelf
Author Spotlight Mike Riley @mriley This month, we turn the spotlight on Mike Riley, author of Portable Python Projects. Mike’s book ...
New
New
CommunityNews
A Brief Review of the Minisforum V3 AMD Tablet. Update: I have created an awesome-minisforum-v3 GitHub repository to list information fo...
New

Latest in PragProg

View all threads ❯