tvanderpol

tvanderpol

Genetic Algorithms in Elixir: First stab at Ch1 algorithm converges just fine? (p28)

I’ve got something of the opposite of the usual problem - my code doesn’t fail in the way the text suggests it should (when it suggests premature convergence is the cause).

I’ve ran the code a fair bit and did some debug print injecting and such but I can’t really see anything out of the ordinary - it converges on the correct answer almost instantly if I run it without any additional debug and it takes a reasonable amount of generations from what I can tell by poking at it.

Now I am clear to continue the chapter as-is, and I understand the argument being made, but I don’t understand how the algorithm is meant to fail (I do in the abstract but I mean the code as written) and that’s bugging me.

Marked As Solved

seanmor5

seanmor5

Author of Genetic Algorithms in Elixir

There was a mistake in my version of the code that forced early convergence with smaller populations that isn’t present in the book’s transcription of the code.

To better demonstrate premature convergence: set chromosome size to 1000 and population size to 100. You’ll notice your version without mutation converges much slower than with mutation. You can continue to decrease the population size further and further and you’ll reach a point where progress completely stops.

Sorry about the confusion!

Also Liked

christhekeele

christhekeele

This was on quite a new Macbook, which may be influencing results from what’s expected.

MacBook Pro (16-inch, 2019)
2.4 GHz 8-Core Intel Core i9
32 GB 2667 MHz DDR4
Erlang/OTP 22 [erts-10.7.2] [64-bit] [smp:16:16]
Elixir 1.10.3

tvanderpol

tvanderpol

Perfect, thank you for responding so fast! That helps my understanding of exactly how it fails a lot.

christhekeele

christhekeele

I noticed this in the B1 edition as well!

Re:

$ elixir one_max.exs
Current Best: 32

But wait, what’s going on here? Why is the algorithm stopping on a best fitness below 42? No matter how many times you run it, the algorithm will almost always certainly stop improving below 42. The problem is premature convergence.

At this point, the chapter’s example code looks like:

Code to Date
population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)

evaluate = fn population ->
  Enum.sort_by(population, &Enum.sum(&1), &>=/2)
end

selection = fn population ->
  population
  |> Enum.chunk_every(2)
  |> Enum.map(&List.to_tuple(&1))
end

crossover = fn population ->
  Enum.reduce(population, [], fn {p1, p2}, acc ->
    cx_point = :rand.uniform(42)
    {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
    [h1 ++ t2 | [h2 ++ t1 | acc]]
  end)
end

algorithm = fn population, algorithm ->
  best = Enum.max_by(population, &Enum.sum(&1))
  IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
  if Enum.sum(best) == 42 do
    best
  else
    population
    |> evaluate.()
    |> selection.()
    |> crossover.()
    |> algorithm.(algorithm)
  end
end

solution = algorithm.(population, algorithm)
IO.write("\n Answer is \n")
IO.inspect solution

I parameterized it thusly:

Tunable version
-population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)
+problem_size = 42
+population_size = 100
+
+population = for _ <- 1..population_size, do: for _ <- 1..problem_size, do: Enum.random(0..1)

 evaluate = fn population ->
   Enum.sort_by(population, &Enum.sum(&1), &>=/2)
 end

 selection = fn population ->
   population
   |> Enum.chunk_every(2)
   |> Enum.map(&List.to_tuple(&1))
 end

 crossover = fn population ->
   Enum.reduce(population, [], fn {p1, p2}, acc ->
-    cx_point = :rand.uniform(42)
+    cx_point = :rand.uniform(problem_size)
     {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
     [h1 ++ t2 | [h2 ++ t1 | acc]]
   end)
 end

 algorithm = fn population, algorithm ->
   best = Enum.max_by(population, &Enum.sum(&1))
   IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
-  if Enum.sum(best) == 42 do
+  if Enum.sum(best) == problem_size do
     best
   else
     population
     |> evaluate.()
     |> selection.()
     |> crossover.()
     |> algorithm.(algorithm)
   end
 end

 solution = algorithm.(population, algorithm)
 IO.write("\n Answer is \n")
 IO.inspect solution

In my experimentation, with problem_size = 42, not only did population_size = 100 always converge on the best answer, but even as low as population_size = 8 consistently converged. I started seeing the need for mutation around population_size = 6, which normally gets stuck around 35.

Alternatively, increasing the size of the problem to problem_size = 420 usually converged correctly, but with enough time to watch things work. problem_size = 4200 consistently gets stuck around 2400, as the narrative of the chapter wants it to.

Where Next?

Popular Pragmatic Bookshelf topics Top

telemachus
Python Testing With Pytest - Chapter 2, warnings for “unregistered custom marks” While running the smoke tests in Chapter 2, I get these...
New
sdmoralesma
Title: Web Development with Clojure, Third Edition - migrations/create not working: p159 When I execute the command: user=&gt; (create-...
New
mikecargal
Title: Hands-On Rust (Chap 8 (Adding a Heads Up Display) It looks like ​.with_simple_console_no_bg​(SCREEN_WIDTH*2, SCREEN_HEIGHT*2...
New
mikecargal
Title: Hands-on Rust: question about get_component (page 295) (feel free to respond. “You dug you’re own hole… good luck”) I have somet...
New
New
leonW
I ran this command after installing the sample application: $ cards add do something --owner Brian And got a file not found error: Fil...
New
patoncrispy
I’m new to Rust and am using this book to learn more as well as to feed my interest in game dev. I’ve just finished the flappy dragon exa...
New
AndyDavis3416
@noelrappin Running the webpack dev server, I receive the following warning: ERROR in tsconfig.json TS18003: No inputs were found in c...
New
andreheijstek
After running /bin/setup, the first error was: The foreman' command exists in these Ruby versions: That was easy to fix: gem install fore...
New
New

Other popular topics Top

New
AstonJ
What chair do you have while working… and why? Is there a ‘best’ type of chair or working position for developers?
New
AstonJ
We have a thread about the keyboards we have, but what about nice keyboards we come across that we want? If you have seen any that look n...
New
Maartz
Hi folks, I don’t know if I saw this here but, here’s a new programming language, called Roc Reminds me a bit of Elm and thus Haskell. ...
New
New
New
sir.laksmana_wenk
I’m able to do the “artistic” part of game-development; character designing/modeling, music, environment modeling, etc. However, I don’t...
New
AstonJ
Curious what kind of results others are getting, I think actually prefer the 7B model to the 32B model, not only is it faster but the qua...
New
PragmaticBookshelf
A concise guide to MySQL 9 database administration, covering fundamental concepts, techniques, and best practices. Neil Smyth MySQL...
New
Fl4m3Ph03n1x
Background Lately I am in a quest to find a good quality TTS ai generation tool to run locally in order to create audio for some videos I...
New

Sub Categories: