tvanderpol

tvanderpol

Genetic Algorithms in Elixir: First stab at Ch1 algorithm converges just fine? (p28)

I’ve got something of the opposite of the usual problem - my code doesn’t fail in the way the text suggests it should (when it suggests premature convergence is the cause).

I’ve ran the code a fair bit and did some debug print injecting and such but I can’t really see anything out of the ordinary - it converges on the correct answer almost instantly if I run it without any additional debug and it takes a reasonable amount of generations from what I can tell by poking at it.

Now I am clear to continue the chapter as-is, and I understand the argument being made, but I don’t understand how the algorithm is meant to fail (I do in the abstract but I mean the code as written) and that’s bugging me.

Marked As Solved

seanmor5

seanmor5

Author of Genetic Algorithms in Elixir

There was a mistake in my version of the code that forced early convergence with smaller populations that isn’t present in the book’s transcription of the code.

To better demonstrate premature convergence: set chromosome size to 1000 and population size to 100. You’ll notice your version without mutation converges much slower than with mutation. You can continue to decrease the population size further and further and you’ll reach a point where progress completely stops.

Sorry about the confusion!

Also Liked

christhekeele

christhekeele

This was on quite a new Macbook, which may be influencing results from what’s expected.

MacBook Pro (16-inch, 2019)
2.4 GHz 8-Core Intel Core i9
32 GB 2667 MHz DDR4
Erlang/OTP 22 [erts-10.7.2] [64-bit] [smp:16:16]
Elixir 1.10.3

tvanderpol

tvanderpol

Perfect, thank you for responding so fast! That helps my understanding of exactly how it fails a lot.

christhekeele

christhekeele

I noticed this in the B1 edition as well!

Re:

$ elixir one_max.exs
Current Best: 32

But wait, what’s going on here? Why is the algorithm stopping on a best fitness below 42? No matter how many times you run it, the algorithm will almost always certainly stop improving below 42. The problem is premature convergence.

At this point, the chapter’s example code looks like:

Code to Date
population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)

evaluate = fn population ->
  Enum.sort_by(population, &Enum.sum(&1), &>=/2)
end

selection = fn population ->
  population
  |> Enum.chunk_every(2)
  |> Enum.map(&List.to_tuple(&1))
end

crossover = fn population ->
  Enum.reduce(population, [], fn {p1, p2}, acc ->
    cx_point = :rand.uniform(42)
    {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
    [h1 ++ t2 | [h2 ++ t1 | acc]]
  end)
end

algorithm = fn population, algorithm ->
  best = Enum.max_by(population, &Enum.sum(&1))
  IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
  if Enum.sum(best) == 42 do
    best
  else
    population
    |> evaluate.()
    |> selection.()
    |> crossover.()
    |> algorithm.(algorithm)
  end
end

solution = algorithm.(population, algorithm)
IO.write("\n Answer is \n")
IO.inspect solution

I parameterized it thusly:

Tunable version
-population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)
+problem_size = 42
+population_size = 100
+
+population = for _ <- 1..population_size, do: for _ <- 1..problem_size, do: Enum.random(0..1)

 evaluate = fn population ->
   Enum.sort_by(population, &Enum.sum(&1), &>=/2)
 end

 selection = fn population ->
   population
   |> Enum.chunk_every(2)
   |> Enum.map(&List.to_tuple(&1))
 end

 crossover = fn population ->
   Enum.reduce(population, [], fn {p1, p2}, acc ->
-    cx_point = :rand.uniform(42)
+    cx_point = :rand.uniform(problem_size)
     {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
     [h1 ++ t2 | [h2 ++ t1 | acc]]
   end)
 end

 algorithm = fn population, algorithm ->
   best = Enum.max_by(population, &Enum.sum(&1))
   IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
-  if Enum.sum(best) == 42 do
+  if Enum.sum(best) == problem_size do
     best
   else
     population
     |> evaluate.()
     |> selection.()
     |> crossover.()
     |> algorithm.(algorithm)
   end
 end

 solution = algorithm.(population, algorithm)
 IO.write("\n Answer is \n")
 IO.inspect solution

In my experimentation, with problem_size = 42, not only did population_size = 100 always converge on the best answer, but even as low as population_size = 8 consistently converged. I started seeing the need for mutation around population_size = 6, which normally gets stuck around 35.

Alternatively, increasing the size of the problem to problem_size = 420 usually converged correctly, but with enough time to watch things work. problem_size = 4200 consistently gets stuck around 2400, as the narrative of the chapter wants it to.

Where Next?

Popular Pragmatic Bookshelf topics Top

brianokken
Many tasks_proj/tests directories exist in chapters 2, 3, 5 that have tests that use the custom markers smoke and get, which are not decl...
New
yulkin
your book suggests to use Image.toByteData() to convert image to bytes, however I get the following error: "the getter ‘toByteData’ isn’t...
New
edruder
I thought that there might be interest in using the book with Rails 6.1 and Ruby 2.7.2. I’ll note what I needed to do differently here. ...
New
AndyDavis3416
@noelrappin Running the webpack dev server, I receive the following warning: ERROR in tsconfig.json TS18003: No inputs were found in c...
New
jgchristopher
“The ProductLive.Index template calls a helper function, live_component/3, that in turn calls on the modal component. ” Excerpt From: Br...
New
nicoatridge
Hi, I have just acquired Michael Fazio’s “Kotlin and Android Development” to learn about game programming for Android. I have a game in p...
New
Charles
In general, the book isn’t yet updated for Phoenix version 1.6. On page 18 of the book, the authors indicate that an auto generated of ro...
New
brunogirin
When trying to run tox in parallel as explained on page 151, I got the following error: tox: error: argument -p/–parallel: expected one...
New
jonmac
The allprojects block listed on page 245 produces the following error when syncing gradle: “org.gradle.api.GradleScriptException: A prob...
New
gorkaio
root_layout: {PentoWeb.LayoutView, :root}, This results in the following following error: no “root” html template defined for PentoWeb...
New

Other popular topics Top

AstonJ
Inspired by this post from @Carter, which languages, frameworks or other tech or tools do you think is killing it right now? :upside_down...
New
Exadra37
Oh just spent so much time on this to discover now that RancherOS is in end of life but Rancher is refusing to mark the Github repo as su...
New
AstonJ
If you are experiencing Rails console using 100% CPU on your dev machine, then updating your development and test gems might fix the issu...
New
PragmaticBookshelf
Author Spotlight James Stanier @jstanier James Stanier, author of Effective Remote Work , discusses how to rethink the office as we e...
New
Help
I am trying to crate a game for the Nintendo switch, I wanted to use Java as I am comfortable with that programming language. Can you use...
New
New
PragmaticBookshelf
Author Spotlight: Sophie DeBenedetto @SophieDeBenedetto The days of the traditional request-response web application are long gone, b...
New
sir.laksmana_wenk
I’m able to do the “artistic” part of game-development; character designing/modeling, music, environment modeling, etc. However, I don’t...
New
AnfaengerAlex
Hello, I’m a beginner in Android development and I’m facing an issue with my project setup. In my build.gradle.kts file, I have the foll...
New
AstonJ
Curious what kind of results others are getting, I think actually prefer the 7B model to the 32B model, not only is it faster but the qua...
New

Sub Categories: