tvanderpol

tvanderpol

Genetic Algorithms in Elixir: First stab at Ch1 algorithm converges just fine? (p28)

I’ve got something of the opposite of the usual problem - my code doesn’t fail in the way the text suggests it should (when it suggests premature convergence is the cause).

I’ve ran the code a fair bit and did some debug print injecting and such but I can’t really see anything out of the ordinary - it converges on the correct answer almost instantly if I run it without any additional debug and it takes a reasonable amount of generations from what I can tell by poking at it.

Now I am clear to continue the chapter as-is, and I understand the argument being made, but I don’t understand how the algorithm is meant to fail (I do in the abstract but I mean the code as written) and that’s bugging me.

Marked As Solved

seanmor5

seanmor5

Author of Genetic Algorithms in Elixir

There was a mistake in my version of the code that forced early convergence with smaller populations that isn’t present in the book’s transcription of the code.

To better demonstrate premature convergence: set chromosome size to 1000 and population size to 100. You’ll notice your version without mutation converges much slower than with mutation. You can continue to decrease the population size further and further and you’ll reach a point where progress completely stops.

Sorry about the confusion!

Also Liked

christhekeele

christhekeele

This was on quite a new Macbook, which may be influencing results from what’s expected.

MacBook Pro (16-inch, 2019)
2.4 GHz 8-Core Intel Core i9
32 GB 2667 MHz DDR4
Erlang/OTP 22 [erts-10.7.2] [64-bit] [smp:16:16]
Elixir 1.10.3

tvanderpol

tvanderpol

Perfect, thank you for responding so fast! That helps my understanding of exactly how it fails a lot.

christhekeele

christhekeele

I noticed this in the B1 edition as well!

Re:

$ elixir one_max.exs
Current Best: 32

But wait, what’s going on here? Why is the algorithm stopping on a best fitness below 42? No matter how many times you run it, the algorithm will almost always certainly stop improving below 42. The problem is premature convergence.

At this point, the chapter’s example code looks like:

Code to Date
population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)

evaluate = fn population ->
  Enum.sort_by(population, &Enum.sum(&1), &>=/2)
end

selection = fn population ->
  population
  |> Enum.chunk_every(2)
  |> Enum.map(&List.to_tuple(&1))
end

crossover = fn population ->
  Enum.reduce(population, [], fn {p1, p2}, acc ->
    cx_point = :rand.uniform(42)
    {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
    [h1 ++ t2 | [h2 ++ t1 | acc]]
  end)
end

algorithm = fn population, algorithm ->
  best = Enum.max_by(population, &Enum.sum(&1))
  IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
  if Enum.sum(best) == 42 do
    best
  else
    population
    |> evaluate.()
    |> selection.()
    |> crossover.()
    |> algorithm.(algorithm)
  end
end

solution = algorithm.(population, algorithm)
IO.write("\n Answer is \n")
IO.inspect solution

I parameterized it thusly:

Tunable version
-population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)
+problem_size = 42
+population_size = 100
+
+population = for _ <- 1..population_size, do: for _ <- 1..problem_size, do: Enum.random(0..1)

 evaluate = fn population ->
   Enum.sort_by(population, &Enum.sum(&1), &>=/2)
 end

 selection = fn population ->
   population
   |> Enum.chunk_every(2)
   |> Enum.map(&List.to_tuple(&1))
 end

 crossover = fn population ->
   Enum.reduce(population, [], fn {p1, p2}, acc ->
-    cx_point = :rand.uniform(42)
+    cx_point = :rand.uniform(problem_size)
     {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
     [h1 ++ t2 | [h2 ++ t1 | acc]]
   end)
 end

 algorithm = fn population, algorithm ->
   best = Enum.max_by(population, &Enum.sum(&1))
   IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
-  if Enum.sum(best) == 42 do
+  if Enum.sum(best) == problem_size do
     best
   else
     population
     |> evaluate.()
     |> selection.()
     |> crossover.()
     |> algorithm.(algorithm)
   end
 end

 solution = algorithm.(population, algorithm)
 IO.write("\n Answer is \n")
 IO.inspect solution

In my experimentation, with problem_size = 42, not only did population_size = 100 always converge on the best answer, but even as low as population_size = 8 consistently converged. I started seeing the need for mutation around population_size = 6, which normally gets stuck around 35.

Alternatively, increasing the size of the problem to problem_size = 420 usually converged correctly, but with enough time to watch things work. problem_size = 4200 consistently gets stuck around 2400, as the narrative of the chapter wants it to.

Popular Pragmatic Bookshelf topics Top

jimmykiang
This test is broken right out of the box… — FAIL: TestAgent (7.82s) agent_test.go:77: Error Trace: agent_test.go:77 agent_test.go:...
New
Razor54672
The answer to 3rd Problem of Chapter 5 (Making Choices) of “Practical Programming, Third Edition” seems incorrect in the given answer ke...
New
jeremyhuiskamp
Title: Web Development with Clojure, Third Edition, vB17.0 (p9) The create table guestbook syntax suggested doesn’t seem to be accepted ...
New
jskubick
I’m running Android Studio “Arctic Fox” 2020.3.1 Patch 2, and I’m embarrassed to admit that I only made it to page 8 before running into ...
New
jskubick
I’m under the impression that when the reader gets to page 136 (“View Data with the Database Inspector”), the code SHOULD be able to buil...
New
rainforest
Hi, I’ve got a question about the implementation of PubSub when using a Phoenix.Socket.Transport behaviour rather than channels. Before ...
New
Keton
When running the program in chapter 8, “Implementing Combat”, the printout Health before attack was never printed so I assumed something ...
New
dtonhofer
@parrt In the context of Chapter 4.3, the grammar Java.g4, meant to parse Java 6 compilation units, no longer passes ANTLR (currently 4....
New
davetron5000
Hello faithful readers! If you have tried to follow along in the book, you are asked to start up the dev environment via dx/build and ar...
New
dachristenson
I’ve got to the end of Ch. 11, and the app runs, with all tabs displaying what they should – at first. After switching around between St...
New

Other popular topics Top

AstonJ
A thread that every forum needs! Simply post a link to a track on YouTube (or SoundCloud or Vimeo amongst others!) on a separate line an...
New
Exadra37
Please tell us what is your preferred monitor setup for programming(not gaming) and why you have chosen it. Does your monitor have eye p...
New
siddhant3030
I’m thinking of buying a monitor that I can rotate to use as a vertical monitor? Also, I want to know if someone is using it for program...
New
AstonJ
I have seen the keycaps I want - they are due for a group-buy this week but won’t be delivered until October next year!!! :rofl: The Ser...
New
dimitarvp
Small essay with thoughts on macOS vs. Linux: I know @Exadra37 is just waiting around the corner to scream at me “I TOLD YOU SO!!!” but I...
New
PragmaticBookshelf
Learn different ways of writing concurrent code in Elixir and increase your application's performance, without sacrificing scalability or...
New
mafinar
This is going to be a long an frequently posted thread. While talking to a friend of mine who has taken data structure and algorithm cou...
New
First poster: bot
Large Language Models like ChatGPT say The Darnedest Things. The Errors They MakeWhy We Need to Document Them, and What We Have Decided ...
New
AstonJ
This is cool! DEEPSEEK-V3 ON M4 MAC: BLAZING FAST INFERENCE ON APPLE SILICON We just witnessed something incredible: the largest open-s...
New
AstonJ
Curious what kind of results others are getting, I think actually prefer the 7B model to the 32B model, not only is it faster but the qua...
New

Sub Categories: