augusto1024

augusto1024

Machine Learning in Elixir: Chapter 7 - Low accuracy and weight matrix full of NaNs in MLP example

I’m going through the MLP Livebook for identifying cats and dogs, and after training the MLP model and testing it, I get an accuracy of 4.8 (way lower than the example in the book) and the weights matrix int he trained model state is full of NaNs. The code is exactly the same as in the book. What am I doing wrong?

Here’s the output for the trained model state:

%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[256]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228705>
      [-0.006004911381751299, NaN, NaN, -0.006001265719532967, -0.006005018018186092, NaN, NaN, NaN, -0.006005273200571537, -0.005989077966660261, NaN, NaN, NaN, -0.006004870403558016, NaN, NaN, -0.006005257833749056, -0.006004877854138613, -0.006005317438393831, NaN, -0.005980218760669231, -0.005973377730697393, -0.00600520521402359, NaN, NaN, NaN, -0.006004676688462496, NaN, NaN, NaN, NaN, -0.006004626862704754, NaN, -0.006004307884722948, NaN, -0.006003706716001034, NaN, -0.006005176343023777, NaN, NaN, -0.00600530905649066, NaN, -0.006003919057548046, -0.005942464806139469, NaN, -0.006004999857395887, NaN, NaN, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[27648][256]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228706>
      [
        [-0.009822199121117592, NaN, NaN, -0.019302891567349434, 0.0013210634933784604, NaN, NaN, NaN, -0.0035181990824639797, -0.003965682815760374, NaN, NaN, NaN, -0.012110317125916481, NaN, NaN, -0.010716570541262627, 0.006445782259106636, -0.005844426807016134, NaN, -0.008739138022065163, -0.009861554950475693, -0.01141569297760725, NaN, NaN, NaN, -0.007794689387083054, NaN, NaN, NaN, NaN, 0.007325031328946352, NaN, -0.008747091516852379, NaN, -0.015862425789237022, NaN, -0.0023863192182034254, NaN, NaN, -0.008942843414843082, NaN, -0.01665472239255905, -0.01721101626753807, NaN, -0.005523331463336945, NaN, ...],
        ...
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[128]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228707>
      [-0.006005339790135622, -0.006005363073199987, NaN, 0.0, -0.006005348637700081, -0.006000204011797905, NaN, -0.0059988489374518394, -0.00600522430613637, NaN, 0.0, 0.006004837807267904, NaN, NaN, 0.0059986296109855175, -0.006005391012877226, -0.006004904862493277, NaN, 0.0060051423497498035, NaN, 0.006003301590681076, NaN, NaN, NaN, -0.0060053858906030655, -0.006005320698022842, 0.0, 0.00600471580401063, 0.0, NaN, NaN, -0.006005088798701763, -0.0060053677298128605, NaN, NaN, -0.006004550959914923, NaN, -0.006004488095641136, -0.006004879716783762, NaN, NaN, NaN, NaN, NaN, 0.0, NaN, 0.006000214722007513, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[256][128]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228708>
      [
        [0.1141437217593193, 0.02805522084236145, NaN, 0.09622809290885925, 0.05185674503445625, 0.017901137471199036, NaN, 0.046677932143211365, -0.12201476842164993, NaN, -0.09235477447509766, -0.006104507949203253, NaN, NaN, 0.08608447760343552, 0.012301136739552021, -0.05758747458457947, NaN, -0.08425487577915192, NaN, -0.07365603744983673, NaN, NaN, NaN, 0.07276518642902374, 0.00285704736597836, -0.12260323762893677, 0.11970219016075134, -0.08480334281921387, NaN, NaN, -0.039198994636535645, -0.03682233393192291, NaN, NaN, -0.08676794916391373, NaN, 0.03924785554409027, 0.07963936030864716, NaN, NaN, NaN, NaN, NaN, 0.027959883213043213, NaN, ...],
        ...
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228709>
      [NaN]
    >,
    "kernel" => #Nx.Tensor<
      f32[128][1]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228710>
      [
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        ...
      ]
    >
  }
}

Most Liked

chico1992

chico1992

HI, I ran into the same issues but was able to make it work by pinning the versions of axon, nx and elxa to the latest 0.5.x version and make the examples work the same way as in the book

{:axon, "== 0.5.1"},
{:nx, "== 0.5.3"},
{:exla, "== 0.5.3"},

hope this helps if someone else comes across this issue

Christophe

Christophe

Hello @seanmor5

I have the same problem, from chapter 7 when I try the cnn_trained_model_state the results are not the same as in the book :


09:03:50.990 [debug] Forwarding options: [compiler: EXLA] to JIT compiler

Epoch: 0, Batch: 150, accuracy: 0.5013453 loss: 7.5956130

Epoch: 1, Batch: 163, accuracy: 0.5018579 loss: 7.6527510

Epoch: 2, Batch: 176, accuracy: 0.5010152 loss: 7.6714020

Epoch: 3, Batch: 139, accuracy: 0.5034598 loss: 7.6697083

Epoch: 4, Batch: 152, accuracy: 0.5019404 loss: 7.6802869

And I have NaN in the model

        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        ...
      ]
    >
  }
}
```

Where Next?

Popular Pragmatic Bookshelf topics Top

jamis
The following is cross-posted from the original Ray Tracer Challenge forum, from a post by garfieldnate. I’m cross-posting it so that the...
New
mikecargal
Title: Hands-On Rust (Chap 8 (Adding a Heads Up Display) It looks like ​.with_simple_console_no_bg​(SCREEN_WIDTH*2, SCREEN_HEIGHT*2...
New
herminiotorres
Hi @Margaret , On page VII the book tells us the example and snippets will be all using Elixir version 1.11 But on page 3 almost the en...
New
leba0495
Hello! Thanks for the great book. I was attempting the Trie (chap 17) exercises and for number 4 the solution provided for the autocorre...
New
fynn
This is as much a suggestion as a question, as a note for others. Locally the SGP30 wasn’t available, so I ordered a SGP40. On page 53, ...
New
jskubick
I think I might have found a problem involving SwitchCompat, thumbTint, and trackTint. As entered, the SwitchCompat changes color to hol...
New
New
EdBorn
Title: Agile Web Development with Rails 7: (page 70) I am running windows 11 pro with rails 7.0.3 and ruby 3.1.2p20 (2022-04-12 revision...
New
andreheijstek
After running /bin/setup, the first error was: The foreman' command exists in these Ruby versions: That was easy to fix: gem install fore...
New
New

Other popular topics Top

Devtalk
Hello Devtalk World! Please let us know a little about who you are and where you’re from :nerd_face:
New
Devtalk
Reading something? Working on something? Planning something? Changing jobs even!? If you’re up for sharing, please let us know what you’...
1033 17470 383
New
dasdom
No chair. I have a standing desk. This post was split into a dedicated thread from our thread about chairs :slight_smile:
New
Rainer
Not sure if following fits exactly this thread, or if we should have a hobby thread… For many years I’m designing and building model air...
New
Exadra37
I am asking for any distro that only has the bare-bones to be able to get a shell in the server and then just install the packages as we ...
New
AstonJ
If you are experiencing Rails console using 100% CPU on your dev machine, then updating your development and test gems might fix the issu...
New
mafinar
Crystal recently reached version 1. I had been following it for awhile but never got to really learn it. Most languages I picked up out o...
New
PragmaticBookshelf
Rails 7 completely redefines what it means to produce fantastic user experiences and provides a way to achieve all the benefits of single...
New
First poster: joeb
The File System Access API with Origin Private File System. WebKit supports new API that makes it possible for web apps to create, open,...
New
First poster: bot
zig/http.zig at 7cf2cbb33ef34c1d211135f56d30fe23b6cacd42 · ziglang/zig. General-purpose programming language and toolchain for maintaini...
New

Sub Categories: