augusto1024

augusto1024

Machine Learning in Elixir: Chapter 7 - Low accuracy and weight matrix full of NaNs in MLP example

I’m going through the MLP Livebook for identifying cats and dogs, and after training the MLP model and testing it, I get an accuracy of 4.8 (way lower than the example in the book) and the weights matrix int he trained model state is full of NaNs. The code is exactly the same as in the book. What am I doing wrong?

Here’s the output for the trained model state:

%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[256]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228705>
      [-0.006004911381751299, NaN, NaN, -0.006001265719532967, -0.006005018018186092, NaN, NaN, NaN, -0.006005273200571537, -0.005989077966660261, NaN, NaN, NaN, -0.006004870403558016, NaN, NaN, -0.006005257833749056, -0.006004877854138613, -0.006005317438393831, NaN, -0.005980218760669231, -0.005973377730697393, -0.00600520521402359, NaN, NaN, NaN, -0.006004676688462496, NaN, NaN, NaN, NaN, -0.006004626862704754, NaN, -0.006004307884722948, NaN, -0.006003706716001034, NaN, -0.006005176343023777, NaN, NaN, -0.00600530905649066, NaN, -0.006003919057548046, -0.005942464806139469, NaN, -0.006004999857395887, NaN, NaN, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[27648][256]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228706>
      [
        [-0.009822199121117592, NaN, NaN, -0.019302891567349434, 0.0013210634933784604, NaN, NaN, NaN, -0.0035181990824639797, -0.003965682815760374, NaN, NaN, NaN, -0.012110317125916481, NaN, NaN, -0.010716570541262627, 0.006445782259106636, -0.005844426807016134, NaN, -0.008739138022065163, -0.009861554950475693, -0.01141569297760725, NaN, NaN, NaN, -0.007794689387083054, NaN, NaN, NaN, NaN, 0.007325031328946352, NaN, -0.008747091516852379, NaN, -0.015862425789237022, NaN, -0.0023863192182034254, NaN, NaN, -0.008942843414843082, NaN, -0.01665472239255905, -0.01721101626753807, NaN, -0.005523331463336945, NaN, ...],
        ...
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[128]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228707>
      [-0.006005339790135622, -0.006005363073199987, NaN, 0.0, -0.006005348637700081, -0.006000204011797905, NaN, -0.0059988489374518394, -0.00600522430613637, NaN, 0.0, 0.006004837807267904, NaN, NaN, 0.0059986296109855175, -0.006005391012877226, -0.006004904862493277, NaN, 0.0060051423497498035, NaN, 0.006003301590681076, NaN, NaN, NaN, -0.0060053858906030655, -0.006005320698022842, 0.0, 0.00600471580401063, 0.0, NaN, NaN, -0.006005088798701763, -0.0060053677298128605, NaN, NaN, -0.006004550959914923, NaN, -0.006004488095641136, -0.006004879716783762, NaN, NaN, NaN, NaN, NaN, 0.0, NaN, 0.006000214722007513, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[256][128]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228708>
      [
        [0.1141437217593193, 0.02805522084236145, NaN, 0.09622809290885925, 0.05185674503445625, 0.017901137471199036, NaN, 0.046677932143211365, -0.12201476842164993, NaN, -0.09235477447509766, -0.006104507949203253, NaN, NaN, 0.08608447760343552, 0.012301136739552021, -0.05758747458457947, NaN, -0.08425487577915192, NaN, -0.07365603744983673, NaN, NaN, NaN, 0.07276518642902374, 0.00285704736597836, -0.12260323762893677, 0.11970219016075134, -0.08480334281921387, NaN, NaN, -0.039198994636535645, -0.03682233393192291, NaN, NaN, -0.08676794916391373, NaN, 0.03924785554409027, 0.07963936030864716, NaN, NaN, NaN, NaN, NaN, 0.027959883213043213, NaN, ...],
        ...
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228709>
      [NaN]
    >,
    "kernel" => #Nx.Tensor<
      f32[128][1]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228710>
      [
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        ...
      ]
    >
  }
}

Most Liked

chico1992

chico1992

HI, I ran into the same issues but was able to make it work by pinning the versions of axon, nx and elxa to the latest 0.5.x version and make the examples work the same way as in the book

{:axon, "== 0.5.1"},
{:nx, "== 0.5.3"},
{:exla, "== 0.5.3"},

hope this helps if someone else comes across this issue

Christophe

Christophe

Hello @seanmor5

I have the same problem, from chapter 7 when I try the cnn_trained_model_state the results are not the same as in the book :


09:03:50.990 [debug] Forwarding options: [compiler: EXLA] to JIT compiler

Epoch: 0, Batch: 150, accuracy: 0.5013453 loss: 7.5956130

Epoch: 1, Batch: 163, accuracy: 0.5018579 loss: 7.6527510

Epoch: 2, Batch: 176, accuracy: 0.5010152 loss: 7.6714020

Epoch: 3, Batch: 139, accuracy: 0.5034598 loss: 7.6697083

Epoch: 4, Batch: 152, accuracy: 0.5019404 loss: 7.6802869

And I have NaN in the model

        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        ...
      ]
    >
  }
}
```

Where Next?

Popular Pragmatic Bookshelf topics Top

jon
Some minor things in the paper edition that says “3 2020” on the title page verso, not mentioned in the book’s errata online: p. 186 But...
New
jskubick
I think I might have found a problem involving SwitchCompat, thumbTint, and trackTint. As entered, the SwitchCompat changes color to hol...
New
hgkjshegfskef
The test is as follows: Scenario: Intersecting a scaled sphere with a ray Given r ← ray(point(0, 0, -5), vector(0, 0, 1)) And s ← sphere...
New
digitalbias
Title: Build a Weather Station with Elixir and Nerves: Problem connecting to Postgres with Grafana on (page 64) If you follow the defau...
New
dsmith42
Hey there, I’m enjoying this book and have learned a few things alredayd. However, in Chapter 4 I believe we are meant to see the “&gt;...
New
taguniversalmachine
Hi, I am getting an error I cannot figure out on my test. I have what I think is the exact code from the book, other than I changed “us...
New
andreheijstek
After running /bin/setup, the first error was: The foreman' command exists in these Ruby versions: That was easy to fix: gem install fore...
New
a.zampa
@mfazio23 I’m following the indications of the book and arriver ad chapter 10, but the app cannot be compiled due to an error in the Bas...
New
dtonhofer
@parrt In the context of Chapter 4.3, the grammar Java.g4, meant to parse Java 6 compilation units, no longer passes ANTLR (currently 4....
New
davetron5000
Hello faithful readers! If you have tried to follow along in the book, you are asked to start up the dev environment via dx/build and ar...
New

Other popular topics Top

AstonJ
A thread that every forum needs! Simply post a link to a track on YouTube (or SoundCloud or Vimeo amongst others!) on a separate line an...
New
AstonJ
There’s a whole world of custom keycaps out there that I didn’t know existed! Check out all of our Keycaps threads here: https://forum....
New
PragmaticBookshelf
Rust is an exciting new programming language combining the power of C with memory safety, fearless concurrency, and productivity boosters...
New
AstonJ
I ended up cancelling my Moonlander order as I think it’s just going to be a bit too bulky for me. I think the Planck and the Preonic (o...
New
dimitarvp
Small essay with thoughts on macOS vs. Linux: I know @Exadra37 is just waiting around the corner to scream at me “I TOLD YOU SO!!!” but I...
New
Help
I am trying to crate a game for the Nintendo switch, I wanted to use Java as I am comfortable with that programming language. Can you use...
New
PragmaticBookshelf
Programming Ruby is the most complete book on Ruby, covering both the language itself and the standard library as well as commonly used t...
New
CommunityNews
A Brief Review of the Minisforum V3 AMD Tablet. Update: I have created an awesome-minisforum-v3 GitHub repository to list information fo...
New
AstonJ
This is a very quick guide, you just need to: Download LM Studio: https://lmstudio.ai/ Click on search Type DeepSeek, then select the o...
New
mindriot
Ok, well here are some thoughts and opinions on some of the ergonomic keyboards I have, I guess like mini review of each that I use enoug...
New

Sub Categories: