
CoderDennis
Machine Learning in Elixir: chapter 7 CNN model accuracy no better than MLP (page 160)
When training the cnn_model, I get the following output:
Epoch: 0, Batch: 150, accuracy: 0.4985513 loss: 7.6424022
Epoch: 1, Batch: 163, accuracy: 0.4992854 loss: 7.6783161
Epoch: 2, Batch: 176, accuracy: 0.5000441 loss: 7.6865749
Epoch: 3, Batch: 139, accuracy: 0.4983259 loss: 7.6991839
Epoch: 4, Batch: 152, accuracy: 0.4988766 loss: 7.6995916
%{
"conv_0" => %{
"bias" => #Nx.Tensor<
f32[32]
EXLA.Backend<host:0, 0.1357844422.1979580433.82179>
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]
>,
"kernel" => #Nx.Tensor<
f32[3][3][3][32]
EXLA.Backend<host:0, 0.1357844422.1979580433.82180>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"conv_1" => %{
"bias" => #Nx.Tensor<
f32[64]
EXLA.Backend<host:0, 0.1357844422.1979580433.82181>
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, -0.0071477023884654045, NaN, NaN, NaN, NaN, 0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
>,
"kernel" => #Nx.Tensor<
f32[3][3][32][64]
EXLA.Backend<host:0, 0.1357844422.1979580433.82182>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"conv_2" => %{
"bias" => #Nx.Tensor<
f32[128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82183>
[0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 0.005036031361669302, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
>,
"kernel" => #Nx.Tensor<
f32[3][3][64][128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82184>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"dense_0" => %{
"bias" => #Nx.Tensor<
f32[128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82185>
[NaN, -0.005992305930703878, -0.006005365401506424, -0.004664595704525709, NaN, NaN, NaN, -5.619042203761637e-4, 0.0, NaN, -0.005999671295285225, -6.131592726887902e-6, NaN, 0.0, NaN, 0.0, 0.0, NaN, NaN, -0.006002828478813171, -0.00600335793569684, 0.0, NaN, NaN, NaN, -0.006002923008054495, -0.006005282513797283, -0.00600528996437788, -0.0060048955492675304, -0.006004981696605682, NaN, -0.006004655733704567, -0.006005233619362116, NaN, -0.006004724185913801, -0.006005335133522749, -0.006005051080137491, -0.006004408933222294, NaN, -0.006005355156958103, 0.0, -0.006005344912409782, 0.0, NaN, -0.005991040728986263, ...]
>,
"kernel" => #Nx.Tensor<
f32[18432][128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82186>
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
]
>
},
"dense_1" => %{
"bias" => #Nx.Tensor<
f32[1]
EXLA.Backend<host:0, 0.1357844422.1979580433.82187>
[NaN]
>,
"kernel" => #Nx.Tensor<
f32[128][1]
EXLA.Backend<host:0, 0.1357844422.1979580433.82188>
[
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
...
]
>
}
}
The accuracy of the mlp_model was Batch: 6, accuracy: 0.5078125
and the accuracy of this cnn_model is Batch: 6, accuracy: 0.4944196
which was slightly worse instead of the expected “significantly better.”
I reviewed all the code to make sure I hadn’t missed anything, but I couldn’t find anything that didn’t match.
I’m guessing the NaN
s in the trained model state are a problem, but I’m not sure how to fix that.
Marked As Solved

CoderDennis
Switching to Axon 0.7 resolved the issue.
Popular Pragmatic Bookshelf topics

Page 28: It implements io.ReaderAt on the store type.
Sorry if it’s a dumb question but was the io.ReaderAt supposed to be io.ReadAt?
...
New

Hi! I know not the intentions behind this narrative when called, on page XI:
mount() |> handle_event() |> render()
but the correc...
New

The generated iex result below should list products instead of product for the metadata. (page 67)
iex> product = %Product{}
%Pento....
New

This isn’t directly about the book contents so maybe not the right forum…but in some of the code apps (e.g. turbo/06) it sends a TURBO_ST...
New

Dear Sophie.
I tried to do the “Authorization” exercise and have two questions:
When trying to plug in an email-service, I found the ...
New

When trying to generate the protobuf .go file, I receive this error:
Unknown flag: --go_opt
libprotoc 3.12.3
MacOS 11.3.1
Googling ...
New

Running mix deps.get in the sensor_hub directory fails with the following error:
** (Mix) No SSH public keys found in ~/.ssh. An ssh aut...
New

I’m running Android Studio “Arctic Fox” 2020.3.1 Patch 2, and I’m embarrassed to admit that I only made it to page 8 before running into ...
New

I found an issue in Chapter 7 regarding android:backgroundTint vs app:backgroundTint.
How to replicate:
load chapter-7 from zipfile i...
New

When installing Cards as an editable package, I get the following error:
ERROR: File “setup.py” not found. Directory cannot be installe...
New
Other popular topics

A thread that every forum needs!
Simply post a link to a track on YouTube (or SoundCloud or Vimeo amongst others!) on a separate line an...
New

What chair do you have while working… and why?
Is there a ‘best’ type of chair or working position for developers?
New

“Finding the Boundaries” Hero’s Journey with Noel Rappin @noelrappin
Even when you’re ultimately right about what the future ho...
New

I am asking for any distro that only has the bare-bones to be able to get a shell in the server and then just install the packages as we ...
New

Rails 7 completely redefines what it means to produce fantastic user experiences and provides a way to achieve all the benefits of single...
New

If you get Can't find emacs in your PATH when trying to install Doom Emacs on your Mac you… just… need to install Emacs first! :lol:
bre...
New

Author Spotlight
Jamis Buck
@jamis
This month, we have the pleasure of spotlighting author Jamis Buck, who has written Mazes for Prog...
New

Large Language Models like ChatGPT say The Darnedest Things.
The Errors They MakeWhy We Need to Document Them, and What We Have Decided ...
New

I have always used antique keyboards like Cherry MX 1800 or Cherry MX 8100 and almost always have modified the switches in some way, like...
New

Curious what kind of results others are getting, I think actually prefer the 7B model to the 32B model, not only is it faster but the qua...
New
Categories:
Sub Categories:
Popular Portals
- /elixir
- /rust
- /wasm
- /ruby
- /erlang
- /phoenix
- /keyboards
- /rails
- /js
- /python
- /security
- /go
- /swift
- /vim
- /clojure
- /java
- /haskell
- /emacs
- /svelte
- /onivim
- /typescript
- /crystal
- /c-plus-plus
- /tailwind
- /kotlin
- /gleam
- /react
- /flutter
- /elm
- /ocaml
- /ash
- /vscode
- /opensuse
- /centos
- /php
- /deepseek
- /html
- /scala
- /zig
- /debian
- /nixos
- /lisp
- /agda
- /sublime-text
- /textmate
- /react-native
- /kubuntu
- /arch-linux
- /revery
- /ubuntu
- /spring
- /manjaro
- /django
- /diversity
- /lua
- /nodejs
- /julia
- /c
- /slackware
- /neovim