CoderDennis
Machine Learning in Elixir: chapter 7 CNN model accuracy no better than MLP (page 160)
When training the cnn_model, I get the following output:
Epoch: 0, Batch: 150, accuracy: 0.4985513 loss: 7.6424022
Epoch: 1, Batch: 163, accuracy: 0.4992854 loss: 7.6783161
Epoch: 2, Batch: 176, accuracy: 0.5000441 loss: 7.6865749
Epoch: 3, Batch: 139, accuracy: 0.4983259 loss: 7.6991839
Epoch: 4, Batch: 152, accuracy: 0.4988766 loss: 7.6995916
%{
"conv_0" => %{
"bias" => #Nx.Tensor<
f32[32]
EXLA.Backend<host:0, 0.1357844422.1979580433.82179>
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]
>,
"kernel" => #Nx.Tensor<
f32[3][3][3][32]
EXLA.Backend<host:0, 0.1357844422.1979580433.82180>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"conv_1" => %{
"bias" => #Nx.Tensor<
f32[64]
EXLA.Backend<host:0, 0.1357844422.1979580433.82181>
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, -0.0071477023884654045, NaN, NaN, NaN, NaN, 0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
>,
"kernel" => #Nx.Tensor<
f32[3][3][32][64]
EXLA.Backend<host:0, 0.1357844422.1979580433.82182>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"conv_2" => %{
"bias" => #Nx.Tensor<
f32[128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82183>
[0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 0.005036031361669302, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
>,
"kernel" => #Nx.Tensor<
f32[3][3][64][128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82184>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"dense_0" => %{
"bias" => #Nx.Tensor<
f32[128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82185>
[NaN, -0.005992305930703878, -0.006005365401506424, -0.004664595704525709, NaN, NaN, NaN, -5.619042203761637e-4, 0.0, NaN, -0.005999671295285225, -6.131592726887902e-6, NaN, 0.0, NaN, 0.0, 0.0, NaN, NaN, -0.006002828478813171, -0.00600335793569684, 0.0, NaN, NaN, NaN, -0.006002923008054495, -0.006005282513797283, -0.00600528996437788, -0.0060048955492675304, -0.006004981696605682, NaN, -0.006004655733704567, -0.006005233619362116, NaN, -0.006004724185913801, -0.006005335133522749, -0.006005051080137491, -0.006004408933222294, NaN, -0.006005355156958103, 0.0, -0.006005344912409782, 0.0, NaN, -0.005991040728986263, ...]
>,
"kernel" => #Nx.Tensor<
f32[18432][128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82186>
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
]
>
},
"dense_1" => %{
"bias" => #Nx.Tensor<
f32[1]
EXLA.Backend<host:0, 0.1357844422.1979580433.82187>
[NaN]
>,
"kernel" => #Nx.Tensor<
f32[128][1]
EXLA.Backend<host:0, 0.1357844422.1979580433.82188>
[
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
...
]
>
}
}
The accuracy of the mlp_model was Batch: 6, accuracy: 0.5078125 and the accuracy of this cnn_model is Batch: 6, accuracy: 0.4944196 which was slightly worse instead of the expected “significantly better.”
I reviewed all the code to make sure I hadn’t missed anything, but I couldn’t find anything that didn’t match.
I’m guessing the NaNs in the trained model state are a problem, but I’m not sure how to fix that.
Marked As Solved
CoderDennis
Switching to Axon 0.7 resolved the issue.
Popular Pragmatic Bookshelf topics
page 20: … protoc command…
I had to additionally run the following go get commands in order to be able to compile protobuf code using go...
New
Running the examples in chapter 5 c under pytest 5.4.1 causes an AttributeError: ‘module’ object has no attribute ‘config’.
In particula...
New
Many tasks_proj/tests directories exist in chapters 2, 3, 5 that have tests that use the custom markers smoke and get, which are not decl...
New
Hi Jamis,
I think there’s an issue with a test on chapter 6. I own the ebook, version P1.0 Feb. 2019.
This test doesn’t pass for me:
...
New
Title: Hands-on Rust: question about get_component (page 295)
(feel free to respond. “You dug you’re own hole… good luck”)
I have somet...
New
Hi @Margaret ,
On page VII the book tells us the example and snippets will be all using Elixir version 1.11
But on page 3 almost the en...
New
Hi @venkats,
It has been mentioned in the description of ‘Supervisory Job’ title that 2 things as mentioned below result in the same eff...
New
I think I might have found a problem involving SwitchCompat, thumbTint, and trackTint.
As entered, the SwitchCompat changes color to hol...
New
Is there any place where we can discuss the solutions to some of the exercises? I can figure most of them out, but am having trouble with...
New
Hi all,
currently I wonder how the Tailwind colours work (or don’t work).
For example, in app/views/layouts/application.html.erb I have...
New
Other popular topics
There’s a whole world of custom keycaps out there that I didn’t know existed!
Check out all of our Keycaps threads here:
https://forum....
New
I have seen the keycaps I want - they are due for a group-buy this week but won’t be delivered until October next year!!! :rofl:
The Ser...
New
The V Programming Language
Simple language for building maintainable programs
V is already mentioned couple of times in the forum, but I...
New
Saw this on TikTok of all places! :lol:
Anyone heard of them before?
Lite:
New
A few weeks ago I started using Warp a terminal written in rust. Though in it’s current state of development there are a few caveats (tab...
New
Rails 7 completely redefines what it means to produce fantastic user experiences and provides a way to achieve all the benefits of single...
New
If you want a quick and easy way to block any website on your Mac using Little Snitch simply…
File > New Rule:
And select Deny, O...
New
Author Spotlight
Erin Dees
@undees
Welcome to our new author spotlight! We had the pleasure of chatting with Erin Dees, co-author of ...
New
Hello,
I’m a beginner in Android development and I’m facing an issue with my project setup. In my build.gradle.kts file, I have the foll...
New
A concise guide to MySQL 9 database administration, covering fundamental concepts, techniques, and best practices.
Neil Smyth
MySQL...
New
Categories:
Sub Categories:
Popular Portals
- /elixir
- /rust
- /ruby
- /wasm
- /erlang
- /phoenix
- /keyboards
- /python
- /js
- /rails
- /security
- /go
- /swift
- /vim
- /clojure
- /emacs
- /haskell
- /java
- /svelte
- /onivim
- /typescript
- /kotlin
- /c-plus-plus
- /crystal
- /tailwind
- /react
- /gleam
- /ocaml
- /elm
- /flutter
- /vscode
- /ash
- /opensuse
- /html
- /centos
- /php
- /zig
- /deepseek
- /scala
- /textmate
- /sublime-text
- /lisp
- /react-native
- /nixos
- /debian
- /agda
- /kubuntu
- /arch-linux
- /django
- /deno
- /revery
- /ubuntu
- /nodejs
- /spring
- /manjaro
- /diversity
- /lua
- /julia
- /markdown
- /c








