CoderDennis

CoderDennis

Machine Learning in Elixir: chapter 7 CNN model accuracy no better than MLP (page 160)

When training the cnn_model, I get the following output:

Epoch: 0, Batch: 150, accuracy: 0.4985513 loss: 7.6424022
Epoch: 1, Batch: 163, accuracy: 0.4992854 loss: 7.6783161
Epoch: 2, Batch: 176, accuracy: 0.5000441 loss: 7.6865749
Epoch: 3, Batch: 139, accuracy: 0.4983259 loss: 7.6991839
Epoch: 4, Batch: 152, accuracy: 0.4988766 loss: 7.6995916

%{
  "conv_0" => %{
    "bias" => #Nx.Tensor<
      f32[32]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82179>
      [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]
    >,
    "kernel" => #Nx.Tensor<
      f32[3][3][3][32]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82180>
      [
        [
          [
            [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN],
            [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
            ...
          ],
          ...
        ],
        ...
      ]
    >
  },
  "conv_1" => %{
    "bias" => #Nx.Tensor<
      f32[64]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82181>
      [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, -0.0071477023884654045, NaN, NaN, NaN, NaN, 0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[3][3][32][64]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82182>
      [
        [
          [
            [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
            ...
          ],
          ...
        ],
        ...
      ]
    >
  },
  "conv_2" => %{
    "bias" => #Nx.Tensor<
      f32[128]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82183>
      [0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 0.005036031361669302, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[3][3][64][128]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82184>
      [
        [
          [
            [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
            ...
          ],
          ...
        ],
        ...
      ]
    >
  },
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[128]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82185>
      [NaN, -0.005992305930703878, -0.006005365401506424, -0.004664595704525709, NaN, NaN, NaN, -5.619042203761637e-4, 0.0, NaN, -0.005999671295285225, -6.131592726887902e-6, NaN, 0.0, NaN, 0.0, 0.0, NaN, NaN, -0.006002828478813171, -0.00600335793569684, 0.0, NaN, NaN, NaN, -0.006002923008054495, -0.006005282513797283, -0.00600528996437788, -0.0060048955492675304, -0.006004981696605682, NaN, -0.006004655733704567, -0.006005233619362116, NaN, -0.006004724185913801, -0.006005335133522749, -0.006005051080137491, -0.006004408933222294, NaN, -0.006005355156958103, 0.0, -0.006005344912409782, 0.0, NaN, -0.005991040728986263, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[18432][128]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82186>
      [
        [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
        ...
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82187>
      [NaN]
    >,
    "kernel" => #Nx.Tensor<
      f32[128][1]
      EXLA.Backend<host:0, 0.1357844422.1979580433.82188>
      [
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        ...
      ]
    >
  }
}

The accuracy of the mlp_model was Batch: 6, accuracy: 0.5078125 and the accuracy of this cnn_model is Batch: 6, accuracy: 0.4944196 which was slightly worse instead of the expected “significantly better.”

I reviewed all the code to make sure I hadn’t missed anything, but I couldn’t find anything that didn’t match.

I’m guessing the NaNs in the trained model state are a problem, but I’m not sure how to fix that.

Marked As Solved

CoderDennis

CoderDennis

Switching to Axon 0.7 resolved the issue.

Where Next?

Popular Pragmatic Bookshelf topics Top

jesse050717
Title: Web Development with Clojure, Third Edition, pg 116 Hi - I just started chapter 5 and I am stuck on page 116 while trying to star...
New
herminiotorres
Hi @Margaret , On page VII the book tells us the example and snippets will be all using Elixir version 1.11 But on page 3 almost the en...
New
AleksandrKudashkin
On the page xv there is an instruction to run bin/setup from the main folder. I downloaded the source code today (12/03/21) and can’t see...
New
rmurray10127
Title: Intuitive Python: docker run… denied error (page 2) Attempted to run the docker command in both CLI and Powershell PS C:\Users\r...
New
patoncrispy
I’m new to Rust and am using this book to learn more as well as to feed my interest in game dev. I’ve just finished the flappy dragon exa...
New
jgchristopher
“The ProductLive.Index template calls a helper function, live_component/3, that in turn calls on the modal component. ” Excerpt From: Br...
New
Charles
In general, the book isn’t yet updated for Phoenix version 1.6. On page 18 of the book, the authors indicate that an auto generated of ro...
New
brunogirin
When installing Cards as an editable package, I get the following error: ERROR: File “setup.py” not found. Directory cannot be installe...
New
AufHe
I’m a newbie to Rails 7 and have hit an issue with the bin/Dev script mentioned on pages 112-113. Iteration A1 - Seeing the list of prod...
New
rainforest
Hi, I’ve got a question about the implementation of PubSub when using a Phoenix.Socket.Transport behaviour rather than channels. Before ...
New

Other popular topics Top

AstonJ
If it’s a mechanical keyboard, which switches do you have? Would you recommend it? Why? What will your next keyboard be? Pics always w...
New
AstonJ
You might be thinking we should just ask who’s not using VSCode :joy: however there are some new additions in the space that might give V...
New
PragmaticBookshelf
“Finding the Boundaries” Hero’s Journey with Noel Rappin @noelrappin Even when you’re ultimately right about what the future ho...
New
Rainer
Not sure if following fits exactly this thread, or if we should have a hobby thread… For many years I’m designing and building model air...
New
AstonJ
In case anyone else is wondering why Ruby 3 doesn’t show when you do asdf list-all ruby :man_facepalming: do this first: asdf plugin-upd...
New
PragmaticBookshelf
“A Mystical Experience” Hero’s Journey with Paolo Perrotta @nusco Ever wonder how authoring books compares to writing articles?...
New
rustkas
Intensively researching Erlang books and additional resources on it, I have found that the topic of using Regular Expressions is either c...
New
AstonJ
Was just curious to see if any were around, found this one: I got 51/100: Not sure if it was meant to buy I am sure at times the b...
New
DevotionGeo
I have always used antique keyboards like Cherry MX 1800 or Cherry MX 8100 and almost always have modified the switches in some way, like...
New
AstonJ
Curious what kind of results others are getting, I think actually prefer the 7B model to the 32B model, not only is it faster but the qua...
New

Sub Categories: