
CoderDennis
Machine Learning in Elixir: chapter 7 CNN model accuracy no better than MLP (page 160)
When training the cnn_model, I get the following output:
Epoch: 0, Batch: 150, accuracy: 0.4985513 loss: 7.6424022
Epoch: 1, Batch: 163, accuracy: 0.4992854 loss: 7.6783161
Epoch: 2, Batch: 176, accuracy: 0.5000441 loss: 7.6865749
Epoch: 3, Batch: 139, accuracy: 0.4983259 loss: 7.6991839
Epoch: 4, Batch: 152, accuracy: 0.4988766 loss: 7.6995916
%{
"conv_0" => %{
"bias" => #Nx.Tensor<
f32[32]
EXLA.Backend<host:0, 0.1357844422.1979580433.82179>
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]
>,
"kernel" => #Nx.Tensor<
f32[3][3][3][32]
EXLA.Backend<host:0, 0.1357844422.1979580433.82180>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"conv_1" => %{
"bias" => #Nx.Tensor<
f32[64]
EXLA.Backend<host:0, 0.1357844422.1979580433.82181>
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, -0.0071477023884654045, NaN, NaN, NaN, NaN, 0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
>,
"kernel" => #Nx.Tensor<
f32[3][3][32][64]
EXLA.Backend<host:0, 0.1357844422.1979580433.82182>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"conv_2" => %{
"bias" => #Nx.Tensor<
f32[128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82183>
[0.0, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 0.005036031361669302, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...]
>,
"kernel" => #Nx.Tensor<
f32[3][3][64][128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82184>
[
[
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
],
...
],
...
]
>
},
"dense_0" => %{
"bias" => #Nx.Tensor<
f32[128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82185>
[NaN, -0.005992305930703878, -0.006005365401506424, -0.004664595704525709, NaN, NaN, NaN, -5.619042203761637e-4, 0.0, NaN, -0.005999671295285225, -6.131592726887902e-6, NaN, 0.0, NaN, 0.0, 0.0, NaN, NaN, -0.006002828478813171, -0.00600335793569684, 0.0, NaN, NaN, NaN, -0.006002923008054495, -0.006005282513797283, -0.00600528996437788, -0.0060048955492675304, -0.006004981696605682, NaN, -0.006004655733704567, -0.006005233619362116, NaN, -0.006004724185913801, -0.006005335133522749, -0.006005051080137491, -0.006004408933222294, NaN, -0.006005355156958103, 0.0, -0.006005344912409782, 0.0, NaN, -0.005991040728986263, ...]
>,
"kernel" => #Nx.Tensor<
f32[18432][128]
EXLA.Backend<host:0, 0.1357844422.1979580433.82186>
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, ...],
...
]
>
},
"dense_1" => %{
"bias" => #Nx.Tensor<
f32[1]
EXLA.Backend<host:0, 0.1357844422.1979580433.82187>
[NaN]
>,
"kernel" => #Nx.Tensor<
f32[128][1]
EXLA.Backend<host:0, 0.1357844422.1979580433.82188>
[
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
[NaN],
...
]
>
}
}
The accuracy of the mlp_model was Batch: 6, accuracy: 0.5078125
and the accuracy of this cnn_model is Batch: 6, accuracy: 0.4944196
which was slightly worse instead of the expected “significantly better.”
I reviewed all the code to make sure I hadn’t missed anything, but I couldn’t find anything that didn’t match.
I’m guessing the NaN
s in the trained model state are a problem, but I’m not sure how to fix that.
Marked As Solved

CoderDennis
Switching to Axon 0.7 resolved the issue.
Popular Pragmatic Bookshelf topics

Working through the steps (checking that the Info,plist matches exactly), run the demo game and what appears is grey but does not fill th...
New

Title: Hands-On Rust (Chap 8 (Adding a Heads Up Display)
It looks like
.with_simple_console_no_bg(SCREEN_WIDTH*2, SCREEN_HEIGHT*2...
New

In case this helps anyone, I’ve had issues setting up the rails source code. Here were the solutions:
In Gemfile, change
gem 'rails'
t...
New

Dear Sophie.
I tried to do the “Authorization” exercise and have two questions:
When trying to plug in an email-service, I found the ...
New

I’m new to Rust and am using this book to learn more as well as to feed my interest in game dev. I’ve just finished the flappy dragon exa...
New

Hi, I have just acquired Michael Fazio’s “Kotlin and Android Development” to learn about game programming for Android. I have a game in p...
New

When installing Cards as an editable package, I get the following error:
ERROR: File “setup.py” not found. Directory cannot be installe...
New

Hi all,
currently I wonder how the Tailwind colours work (or don’t work).
For example, in app/views/layouts/application.html.erb I have...
New

AWDWR 7, page 152, page 153:
Hello everyone,
I’m a little bit lost on the hotwire part. I didn’t fully understand it.
On page 152 @rub...
New

root_layout: {PentoWeb.LayoutView, :root},
This results in the following following error:
no “root” html template defined for PentoWeb...
New
Other popular topics

A thread that every forum needs!
Simply post a link to a track on YouTube (or SoundCloud or Vimeo amongst others!) on a separate line an...
New

Any thoughts on Svelte?
Svelte is a radical new approach to building user interfaces. Whereas traditional frameworks like React and Vue...
New

Bought the Moonlander mechanical keyboard. Cherry Brown MX switches. Arms and wrists have been hurting enough that it’s time I did someth...
New

There’s a whole world of custom keycaps out there that I didn’t know existed!
Check out all of our Keycaps threads here:
https://forum....
New

If you are experiencing Rails console using 100% CPU on your dev machine, then updating your development and test gems might fix the issu...
New

API 4
Path:
/user/following/
Method:
GET
Description:
Returns the list of all names of people whom the user follows
Response
[
{ ...
New

We’ve talked about his book briefly here but it is quickly becoming obsolete - so he’s decided to create a series of 7 podcasts, the firs...
New

Rails 7 completely redefines what it means to produce fantastic user experiences and provides a way to achieve all the benefits of single...
New

The File System Access API with Origin Private File System.
WebKit supports new API that makes it possible for web apps to create, open,...
New

The overengineered Solution to my Pigeon Problem.
TL;DR: I built a wifi-equipped water gun to shoot the pigeons on my balcony, controlle...
New
Categories:
Sub Categories:
Popular Portals
- /elixir
- /rust
- /ruby
- /wasm
- /erlang
- /phoenix
- /keyboards
- /rails
- /js
- /python
- /security
- /go
- /swift
- /vim
- /clojure
- /emacs
- /haskell
- /java
- /onivim
- /svelte
- /typescript
- /crystal
- /kotlin
- /c-plus-plus
- /tailwind
- /gleam
- /ocaml
- /react
- /elm
- /flutter
- /vscode
- /ash
- /opensuse
- /centos
- /php
- /html
- /deepseek
- /zig
- /scala
- /sublime-text
- /lisp
- /textmate
- /debian
- /nixos
- /react-native
- /agda
- /kubuntu
- /arch-linux
- /ubuntu
- /revery
- /django
- /manjaro
- /spring
- /nodejs
- /diversity
- /lua
- /c
- /julia
- /slackware
- /markdown