iprog4u
Machine Learning in Elixir: Chapter 1 - Unable to train model (page 19)
I am really enjoying the book so far but came across an issue in the first chapter. When running:
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)
Still too new to debug this but it appears an issue with expecting either an f32 or f64 and getting the other and/or passing parameter maps rather than using Axon.ModelState{}:
13:42:29.641 [warning] passing parameter map to initialization is deprecated, use %Axon.ModelState{} instead
Epoch: 0, Batch: 0, accuracy: 0.4750000 loss: 0.0000000
** (ArgumentError) argument at position 3 is not compatible with compiled function template.
%{i: #Nx.Tensor<
s32
>, model_state: #Inspect.Error<
got Protocol.UndefinedError with message:
"""
protocol Enumerable not implemented for type Nx.Defn.TemplateDiff (a struct). This protocol is implemented for the following type(s): Date.Range, Explorer.Series.Iterator, File.Stream, Function, GenEvent.Stream, HashDict, HashSet, IO.Stream, Kino.Control, Kino.Input, Kino.JS.Live, List, Map, MapSet, Range, Stream, Table.Mapper, Table.Zipper
Got value:
#Nx.Tensor<
f32[3]
>
"""
while inspecting:
%{
data: %{
"dense_0" => %{
"bias" => #Nx.Tensor<
f32[3]
>,
"kernel" => #Nx.Tensor<
f32[4][3]
>
}
},
state: %{},
__struct__: Axon.ModelState,
parameters: %{"dense_0" => ["bias", "kernel"]},
frozen_parameters: %{}
}
Stacktrace:
(elixir 1.18.3) lib/enum.ex:1: Enumerable.impl_for!/1
(elixir 1.18.3) lib/enum.ex:166: Enumerable.reduce/3
(elixir 1.18.3) lib/enum.ex:4515: Enum.reduce/3
(axon 0.7.0) lib/axon/model_state.ex:359: anonymous fn/2 in Inspect.Axon.ModelState.get_param_info/1
(stdlib 6.2.2.1) maps.erl:860: :maps.fold_1/4
(axon 0.7.0) lib/axon/model_state.ex:359: anonymous fn/2 in Inspect.Axon.ModelState.get_param_info/1
(stdlib 6.2.2.1) maps.erl:860: :maps.fold_1/4
(axon 0.7.0) lib/axon/model_state.ex:320: Inspect.Axon.ModelState.inspect/2
>, y_true: #Nx.Tensor<
u8[120][3]
>, y_pred: #Nx.Tensor<
f64[120][3]
>, loss:
<<<<< Expected <<<<<
#Nx.Tensor<
f32
>
==========
#Nx.Tensor<
f64
>
>>>>> Argument >>>>>
, optimizer_state: {%{scale: #Nx.Tensor<
f32
>}}, loss_scale_state: %{}}
(nx 0.10.0) lib/nx/defn.ex:342: anonymous fn/7 in Nx.Defn.compile_flatten/5
(nx 0.10.0) lib/nx/lazy_container.ex:73: anonymous fn/3 in Nx.LazyContainer.Map.traverse/3
(elixir 1.18.3) lib/enum.ex:1840: Enum."-map_reduce/3-lists^mapfoldl/2-0-"/3
(elixir 1.18.3) lib/enum.ex:1840: Enum."-map_reduce/3-lists^mapfoldl/2-0-"/3
(nx 0.10.0) lib/nx/lazy_container.ex:72: Nx.LazyContainer.Map.traverse/3
(nx 0.10.0) lib/nx/defn.ex:339: Nx.Defn.compile_flatten/5
(nx 0.10.0) lib/nx/defn.ex:331: anonymous fn/4 in Nx.Defn.compile/3
#cell:3r6bhsjthve53hp7:5: (file)
In my terminal running the livebook I get another warning:
[warning] passing parameter map to initialization is deprecated, use %Axon.ModelState{} instead
but I do not yet know how to do this. Please guide me in the right direction. Thank you.
Marked As Solved
iprog4u
Solution is found at:
https://devtalk.com/t/machine-learning-in-elixir-chapter-1-doesnt-work-with-axon-0-7-page-26/173984
Explicitly converting the training and test sets to :f32 corrects the issue and the simulation can run.
feature_columns = [
"sepal_length",
"sepal_width",
"petal_length",
"petal_width"
]
label_column = "species"
x_train = Nx.stack(train_df[feature_columns], axis: 1)
|> Nx.as_type(:f32)
y_train =
train_df
|> DF.pull(label_column)
|> Explorer.Series.to_list()
|> Enum.map(fn
"Iris-setosa" -> 0
"Iris-versicolor" -> 1
"Iris-virginica" -> 2
end)
|> Nx.tensor(type: :u8)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
|> Nx.as_type(:f32)
x_test = Nx.stack(test_df[feature_columns], axis: 1)
|> Nx.as_type(:f32)
y_test =
test_df
|> DF.pull(label_column)
|> Explorer.Series.to_list()
|> Enum.map(fn
"Iris-setosa" -> 0
"Iris-versicolor" -> 1
"Iris-virginica" -> 2
end)
|> Nx.tensor(type: :u8)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
|> Nx.as_type(:f32)
Popular Pragmatic Bookshelf topics
In Chapter 3, the source for index introduces Config on page 31, followed by more code including tests; Config isn’t introduced until pag...
New
Title: Web Development with Clojure, Third Edition, pg 116
Hi - I just started chapter 5 and I am stuck on page 116 while trying to star...
New
Hi @venkats,
It has been mentioned in the description of ‘Supervisory Job’ title that 2 things as mentioned below result in the same eff...
New
When trying to generate the protobuf .go file, I receive this error:
Unknown flag: --go_opt
libprotoc 3.12.3
MacOS 11.3.1
Googling ...
New
I think I might have found a problem involving SwitchCompat, thumbTint, and trackTint.
As entered, the SwitchCompat changes color to hol...
New
When trying to run tox in parallel as explained on page 151, I got the following error:
tox: error: argument -p/–parallel: expected one...
New
On page 78 the following code appears:
<%= link_to ‘Destroy’, product,
class: ‘hover:underline’,
method: :delete,
data: { confirm...
New
I’m a newbie to Rails 7 and have hit an issue with the bin/Dev script mentioned on pages 112-113.
Iteration A1 - Seeing the list of prod...
New
I am using Android Studio Chipmunk | 2021.2.1 Patch 2
Build #AI-212.5712.43.2112.8815526, built on July 10, 2022
Runtime version: 11.0....
New
Hello @herbert ! Trying to get the very first “Hello, Bracket Terminal!" example to run (p. 53). I develop on an Amazon EC2 instance runn...
New
Other popular topics
I know that these benchmarks might not be the exact picture of real-world scenario, but still I expect a Rust web framework performing a ...
New
I am thinking in building or buy a desktop computer for programing, both professionally and on my free time, and my choice of OS is Linux...
New
Bought the Moonlander mechanical keyboard. Cherry Brown MX switches. Arms and wrists have been hurting enough that it’s time I did someth...
New
New
New
Use WebRTC to build web applications that stream media and data in real time directly from one user to another, all in the browser.
...
New
Biggest jackpot ever apparently! :upside_down_face:
I don’t (usually) gamble/play the lottery, but working on a program to predict the...
New
Author Spotlight
Rebecca Skinner
@RebeccaSkinner
Welcome to our latest author spotlight, where we sit down with Rebecca Skinner, auth...
New
Explore the power of Ash Framework by modeling and building the domain for a real-world web application.
Rebecca Le @sevenseacat and ...
New
This is a very quick guide, you just need to:
Download LM Studio: https://lmstudio.ai/
Click on search
Type DeepSeek, then select the o...
New
Categories:
Sub Categories:
Popular Portals
- /elixir
- /rust
- /wasm
- /ruby
- /erlang
- /phoenix
- /keyboards
- /python
- /js
- /rails
- /security
- /go
- /swift
- /vim
- /clojure
- /emacs
- /java
- /haskell
- /svelte
- /onivim
- /typescript
- /kotlin
- /crystal
- /c-plus-plus
- /tailwind
- /react
- /gleam
- /ocaml
- /elm
- /flutter
- /vscode
- /ash
- /html
- /opensuse
- /zig
- /centos
- /deepseek
- /php
- /scala
- /react-native
- /lisp
- /sublime-text
- /textmate
- /nixos
- /debian
- /agda
- /django
- /kubuntu
- /deno
- /arch-linux
- /nodejs
- /revery
- /ubuntu
- /manjaro
- /spring
- /diversity
- /lua
- /julia
- /markdown
- /slackware









