iprog4u
Machine Learning in Elixir: Chapter 1 - Unable to train model (page 19)
I am really enjoying the book so far but came across an issue in the first chapter. When running:
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)
Still too new to debug this but it appears an issue with expecting either an f32 or f64 and getting the other and/or passing parameter maps rather than using Axon.ModelState{}:
13:42:29.641 [warning] passing parameter map to initialization is deprecated, use %Axon.ModelState{} instead
Epoch: 0, Batch: 0, accuracy: 0.4750000 loss: 0.0000000
** (ArgumentError) argument at position 3 is not compatible with compiled function template.
%{i: #Nx.Tensor<
s32
>, model_state: #Inspect.Error<
got Protocol.UndefinedError with message:
"""
protocol Enumerable not implemented for type Nx.Defn.TemplateDiff (a struct). This protocol is implemented for the following type(s): Date.Range, Explorer.Series.Iterator, File.Stream, Function, GenEvent.Stream, HashDict, HashSet, IO.Stream, Kino.Control, Kino.Input, Kino.JS.Live, List, Map, MapSet, Range, Stream, Table.Mapper, Table.Zipper
Got value:
#Nx.Tensor<
f32[3]
>
"""
while inspecting:
%{
data: %{
"dense_0" => %{
"bias" => #Nx.Tensor<
f32[3]
>,
"kernel" => #Nx.Tensor<
f32[4][3]
>
}
},
state: %{},
__struct__: Axon.ModelState,
parameters: %{"dense_0" => ["bias", "kernel"]},
frozen_parameters: %{}
}
Stacktrace:
(elixir 1.18.3) lib/enum.ex:1: Enumerable.impl_for!/1
(elixir 1.18.3) lib/enum.ex:166: Enumerable.reduce/3
(elixir 1.18.3) lib/enum.ex:4515: Enum.reduce/3
(axon 0.7.0) lib/axon/model_state.ex:359: anonymous fn/2 in Inspect.Axon.ModelState.get_param_info/1
(stdlib 6.2.2.1) maps.erl:860: :maps.fold_1/4
(axon 0.7.0) lib/axon/model_state.ex:359: anonymous fn/2 in Inspect.Axon.ModelState.get_param_info/1
(stdlib 6.2.2.1) maps.erl:860: :maps.fold_1/4
(axon 0.7.0) lib/axon/model_state.ex:320: Inspect.Axon.ModelState.inspect/2
>, y_true: #Nx.Tensor<
u8[120][3]
>, y_pred: #Nx.Tensor<
f64[120][3]
>, loss:
<<<<< Expected <<<<<
#Nx.Tensor<
f32
>
==========
#Nx.Tensor<
f64
>
>>>>> Argument >>>>>
, optimizer_state: {%{scale: #Nx.Tensor<
f32
>}}, loss_scale_state: %{}}
(nx 0.10.0) lib/nx/defn.ex:342: anonymous fn/7 in Nx.Defn.compile_flatten/5
(nx 0.10.0) lib/nx/lazy_container.ex:73: anonymous fn/3 in Nx.LazyContainer.Map.traverse/3
(elixir 1.18.3) lib/enum.ex:1840: Enum."-map_reduce/3-lists^mapfoldl/2-0-"/3
(elixir 1.18.3) lib/enum.ex:1840: Enum."-map_reduce/3-lists^mapfoldl/2-0-"/3
(nx 0.10.0) lib/nx/lazy_container.ex:72: Nx.LazyContainer.Map.traverse/3
(nx 0.10.0) lib/nx/defn.ex:339: Nx.Defn.compile_flatten/5
(nx 0.10.0) lib/nx/defn.ex:331: anonymous fn/4 in Nx.Defn.compile/3
#cell:3r6bhsjthve53hp7:5: (file)
In my terminal running the livebook I get another warning:
[warning] passing parameter map to initialization is deprecated, use %Axon.ModelState{} instead
but I do not yet know how to do this. Please guide me in the right direction. Thank you.
Marked As Solved
iprog4u
Solution is found at:
https://devtalk.com/t/machine-learning-in-elixir-chapter-1-doesnt-work-with-axon-0-7-page-26/173984
Explicitly converting the training and test sets to :f32 corrects the issue and the simulation can run.
feature_columns = [
"sepal_length",
"sepal_width",
"petal_length",
"petal_width"
]
label_column = "species"
x_train = Nx.stack(train_df[feature_columns], axis: 1)
|> Nx.as_type(:f32)
y_train =
train_df
|> DF.pull(label_column)
|> Explorer.Series.to_list()
|> Enum.map(fn
"Iris-setosa" -> 0
"Iris-versicolor" -> 1
"Iris-virginica" -> 2
end)
|> Nx.tensor(type: :u8)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
|> Nx.as_type(:f32)
x_test = Nx.stack(test_df[feature_columns], axis: 1)
|> Nx.as_type(:f32)
y_test =
test_df
|> DF.pull(label_column)
|> Explorer.Series.to_list()
|> Enum.map(fn
"Iris-setosa" -> 0
"Iris-versicolor" -> 1
"Iris-virginica" -> 2
end)
|> Nx.tensor(type: :u8)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
|> Nx.as_type(:f32)
Popular Pragmatic Bookshelf topics
Running the examples in chapter 5 c under pytest 5.4.1 causes an AttributeError: ‘module’ object has no attribute ‘config’.
In particula...
New
Working through the steps (checking that the Info,plist matches exactly), run the demo game and what appears is grey but does not fill th...
New
your book suggests to use Image.toByteData() to convert image to bytes, however I get the following error: "the getter ‘toByteData’ isn’t...
New
I can’t setup the Rails source code. This happens in a working directory containing multiple (postgres) Rails apps.
With:
ruby-3.0.0
s...
New
Hi! I know not the intentions behind this narrative when called, on page XI:
mount() |> handle_event() |> render()
but the correc...
New
Hello! Thanks for the great book.
I was attempting the Trie (chap 17) exercises and for number 4 the solution provided for the autocorre...
New
The test is as follows:
Scenario: Intersecting a scaled sphere with a ray
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← sphere...
New
Hi all,
currently I wonder how the Tailwind colours work (or don’t work).
For example, in app/views/layouts/application.html.erb I have...
New
AWDWR 7, page 152, page 153:
Hello everyone,
I’m a little bit lost on the hotwire part. I didn’t fully understand it.
On page 152 @rub...
New
Hi, I’m working on the Chapter 8 of the book.
After I add add the point_offset, I’m still able to see acne:
In the image above, I re...
New
Other popular topics
I am thinking in building or buy a desktop computer for programing, both professionally and on my free time, and my choice of OS is Linux...
New
I’m thinking of buying a monitor that I can rotate to use as a vertical monitor?
Also, I want to know if someone is using it for program...
New
You might be thinking we should just ask who’s not using VSCode :joy: however there are some new additions in the space that might give V...
New
In case anyone else is wondering why Ruby 3 doesn’t show when you do asdf list-all ruby :man_facepalming: do this first:
asdf plugin-upd...
New
Build highly interactive applications without ever leaving Elixir, the way the experts do. Let LiveView take care of performance, scalabi...
New
A few weeks ago I started using Warp a terminal written in rust. Though in it’s current state of development there are a few caveats (tab...
New
We’ve talked about his book briefly here but it is quickly becoming obsolete - so he’s decided to create a series of 7 podcasts, the firs...
New
Author Spotlight
Rebecca Skinner
@RebeccaSkinner
Welcome to our latest author spotlight, where we sit down with Rebecca Skinner, auth...
New
Author Spotlight:
VM Brasseur
@vmbrasseur
We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
Curious what kind of results others are getting, I think actually prefer the 7B model to the 32B model, not only is it faster but the qua...
New
Categories:
Sub Categories:
Popular Portals
- /elixir
- /rust
- /ruby
- /wasm
- /erlang
- /phoenix
- /keyboards
- /python
- /js
- /rails
- /security
- /go
- /swift
- /vim
- /clojure
- /emacs
- /haskell
- /java
- /svelte
- /onivim
- /typescript
- /kotlin
- /c-plus-plus
- /crystal
- /tailwind
- /react
- /gleam
- /ocaml
- /elm
- /flutter
- /vscode
- /ash
- /opensuse
- /html
- /centos
- /deepseek
- /php
- /zig
- /scala
- /sublime-text
- /lisp
- /textmate
- /react-native
- /debian
- /nixos
- /agda
- /kubuntu
- /arch-linux
- /django
- /deno
- /nodejs
- /revery
- /ubuntu
- /manjaro
- /spring
- /diversity
- /lua
- /julia
- /markdown
- /c









