iprog4u
Machine Learning in Elixir: Chapter 1 - Unable to train model (page 19)
I am really enjoying the book so far but came across an issue in the first chapter. When running:
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)
Still too new to debug this but it appears an issue with expecting either an f32 or f64 and getting the other and/or passing parameter maps rather than using Axon.ModelState{}:
13:42:29.641 [warning] passing parameter map to initialization is deprecated, use %Axon.ModelState{} instead
Epoch: 0, Batch: 0, accuracy: 0.4750000 loss: 0.0000000
** (ArgumentError) argument at position 3 is not compatible with compiled function template.
%{i: #Nx.Tensor<
s32
>, model_state: #Inspect.Error<
got Protocol.UndefinedError with message:
"""
protocol Enumerable not implemented for type Nx.Defn.TemplateDiff (a struct). This protocol is implemented for the following type(s): Date.Range, Explorer.Series.Iterator, File.Stream, Function, GenEvent.Stream, HashDict, HashSet, IO.Stream, Kino.Control, Kino.Input, Kino.JS.Live, List, Map, MapSet, Range, Stream, Table.Mapper, Table.Zipper
Got value:
#Nx.Tensor<
f32[3]
>
"""
while inspecting:
%{
data: %{
"dense_0" => %{
"bias" => #Nx.Tensor<
f32[3]
>,
"kernel" => #Nx.Tensor<
f32[4][3]
>
}
},
state: %{},
__struct__: Axon.ModelState,
parameters: %{"dense_0" => ["bias", "kernel"]},
frozen_parameters: %{}
}
Stacktrace:
(elixir 1.18.3) lib/enum.ex:1: Enumerable.impl_for!/1
(elixir 1.18.3) lib/enum.ex:166: Enumerable.reduce/3
(elixir 1.18.3) lib/enum.ex:4515: Enum.reduce/3
(axon 0.7.0) lib/axon/model_state.ex:359: anonymous fn/2 in Inspect.Axon.ModelState.get_param_info/1
(stdlib 6.2.2.1) maps.erl:860: :maps.fold_1/4
(axon 0.7.0) lib/axon/model_state.ex:359: anonymous fn/2 in Inspect.Axon.ModelState.get_param_info/1
(stdlib 6.2.2.1) maps.erl:860: :maps.fold_1/4
(axon 0.7.0) lib/axon/model_state.ex:320: Inspect.Axon.ModelState.inspect/2
>, y_true: #Nx.Tensor<
u8[120][3]
>, y_pred: #Nx.Tensor<
f64[120][3]
>, loss:
<<<<< Expected <<<<<
#Nx.Tensor<
f32
>
==========
#Nx.Tensor<
f64
>
>>>>> Argument >>>>>
, optimizer_state: {%{scale: #Nx.Tensor<
f32
>}}, loss_scale_state: %{}}
(nx 0.10.0) lib/nx/defn.ex:342: anonymous fn/7 in Nx.Defn.compile_flatten/5
(nx 0.10.0) lib/nx/lazy_container.ex:73: anonymous fn/3 in Nx.LazyContainer.Map.traverse/3
(elixir 1.18.3) lib/enum.ex:1840: Enum."-map_reduce/3-lists^mapfoldl/2-0-"/3
(elixir 1.18.3) lib/enum.ex:1840: Enum."-map_reduce/3-lists^mapfoldl/2-0-"/3
(nx 0.10.0) lib/nx/lazy_container.ex:72: Nx.LazyContainer.Map.traverse/3
(nx 0.10.0) lib/nx/defn.ex:339: Nx.Defn.compile_flatten/5
(nx 0.10.0) lib/nx/defn.ex:331: anonymous fn/4 in Nx.Defn.compile/3
#cell:3r6bhsjthve53hp7:5: (file)
In my terminal running the livebook I get another warning:
[warning] passing parameter map to initialization is deprecated, use %Axon.ModelState{} instead
but I do not yet know how to do this. Please guide me in the right direction. Thank you.
Marked As Solved
iprog4u
Solution is found at:
https://devtalk.com/t/machine-learning-in-elixir-chapter-1-doesnt-work-with-axon-0-7-page-26/173984
Explicitly converting the training and test sets to :f32 corrects the issue and the simulation can run.
feature_columns = [
"sepal_length",
"sepal_width",
"petal_length",
"petal_width"
]
label_column = "species"
x_train = Nx.stack(train_df[feature_columns], axis: 1)
|> Nx.as_type(:f32)
y_train =
train_df
|> DF.pull(label_column)
|> Explorer.Series.to_list()
|> Enum.map(fn
"Iris-setosa" -> 0
"Iris-versicolor" -> 1
"Iris-virginica" -> 2
end)
|> Nx.tensor(type: :u8)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
|> Nx.as_type(:f32)
x_test = Nx.stack(test_df[feature_columns], axis: 1)
|> Nx.as_type(:f32)
y_test =
test_df
|> DF.pull(label_column)
|> Explorer.Series.to_list()
|> Enum.map(fn
"Iris-setosa" -> 0
"Iris-versicolor" -> 1
"Iris-virginica" -> 2
end)
|> Nx.tensor(type: :u8)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
|> Nx.as_type(:f32)
Popular Pragmatic Bookshelf topics
Title: Web Development with Clojure, Third Edition - migrations/create not working: p159
When I execute the command:
user=> (create-...
New
When I try the command to create a pair of migration files I get an error.
user=> (create-migration "guestbook")
Execution error (Ill...
New
I thought that there might be interest in using the book with Rails 6.1 and Ruby 2.7.2. I’ll note what I needed to do differently here.
...
New
Title: Hands-on Rust: question about get_component (page 295)
(feel free to respond. “You dug you’re own hole… good luck”)
I have somet...
New
Hi @Margaret ,
On page VII the book tells us the example and snippets will be all using Elixir version 1.11
But on page 3 almost the en...
New
@noelrappin
Running the webpack dev server, I receive the following warning:
ERROR in tsconfig.json
TS18003: No inputs were found in c...
New
I’m running Android Studio “Arctic Fox” 2020.3.1 Patch 2, and I’m embarrassed to admit that I only made it to page 8 before running into ...
New
Hi, I have just acquired Michael Fazio’s “Kotlin and Android Development” to learn about game programming for Android. I have a game in p...
New
From page 13:
On Python 3.7, you can install the libraries with pip by running these commands inside a Python venv using Visual Studio ...
New
I’ve got to the end of Ch. 11, and the app runs, with all tabs displaying what they should – at first. After switching around between St...
New
Other popular topics
I am thinking in building or buy a desktop computer for programing, both professionally and on my free time, and my choice of OS is Linux...
New
New
I’ve been hearing quite a lot of comments relating to the sound of a keyboard, with one of the most desirable of these called ‘thock’, he...
New
Rust is an exciting new programming language combining the power of C with memory safety, fearless concurrency, and productivity boosters...
New
Biggest jackpot ever apparently! :upside_down_face:
I don’t (usually) gamble/play the lottery, but working on a program to predict the...
New
Author Spotlight
Dmitry Zinoviev
@aqsaqal
Today we’re putting our spotlight on Dmitry Zinoviev, author of Data Science Essentials in ...
New
If you want a quick and easy way to block any website on your Mac using Little Snitch simply…
File > New Rule:
And select Deny, O...
New
Author Spotlight:
VM Brasseur
@vmbrasseur
We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
A Brief Review of the Minisforum V3 AMD Tablet.
Update: I have created an awesome-minisforum-v3 GitHub repository to list information fo...
New
Background
Lately I am in a quest to find a good quality TTS ai generation tool to run locally in order to create audio for some videos I...
New
Categories:
Sub Categories:
Popular Portals
- /elixir
- /rust
- /ruby
- /wasm
- /erlang
- /phoenix
- /keyboards
- /python
- /js
- /rails
- /security
- /go
- /swift
- /vim
- /clojure
- /emacs
- /haskell
- /java
- /svelte
- /onivim
- /typescript
- /kotlin
- /c-plus-plus
- /crystal
- /tailwind
- /react
- /gleam
- /ocaml
- /elm
- /flutter
- /vscode
- /ash
- /html
- /opensuse
- /centos
- /php
- /deepseek
- /zig
- /scala
- /lisp
- /textmate
- /sublime-text
- /react-native
- /nixos
- /debian
- /agda
- /kubuntu
- /arch-linux
- /django
- /deno
- /revery
- /ubuntu
- /spring
- /manjaro
- /nodejs
- /diversity
- /lua
- /julia
- /c
- /slackware








