dtonhofer

dtonhofer

Functional Programming in Java, Second Edition: p 148 "An optimization problem" & "Plain-Vanilla Recursion" problems

On page 148, “An optimization problem” we read:

We’ll employ a solution for a company that buys rods at wholesale and sells them at retail. They figured that by cutting the rods into different sizes, they could maximize profits. The price that the company can charge for different lengths of rod changes often, so the company wants us to write a program to reveal what the maximum profit would be for a given size of rod. 

The above is not computing the profit, but computing the revenue. The profit is revenue - expenses, but we don’t know the expenses, it might include manpower costs, machine costs etc.

The problem would also be more interesting if a rod of length 1 could only be sold at price 0 (i.e. it is wastage), at price 2 it’s too easy.

More seriously, on page 149, “Plain-Vanilla Recursion”, we read:

Continuing with this approach, we find that the maximum profit [revenue] for an arbitrary length n is the maximum of the profits [revenues] from each of the possible 2^(n-1) cuts length. That is, max(no cut, cut(1, n - 1), cut(2, n - 2), …), for a given length n.

It don’t understand the max() notation here, there should probably at least be revenue(.) of a cut schedule in there :thinking:

In any case, the 2^(n-1) is imprecise Not considering symmetries, each cut point at marginal width 1 of which there are n-1, for example for width = 6:

≣|≣|≣|≣|≣|≣

can be switched on or off, giving us indeed 2^(n-1) “cut schedules.”

But considering all symmetries (to collapse similar “cut schedules”, consider only “cut schedules” where the width of a cut is monotonically (but not strictly) increasing from left to right), the number of possible “cut schedules” for width = n is then given by

[A000041 - OEIS] - the number of partitions of n (the partition numbers)

(I didn’t find this by myself, I first wrote the program to list the schedules, then duckduckgoed the sequence)

For example for width = 6, there are only 11 distinct ways to cut:

Number of ways of cutting for width = 6: 11
≣≣≣≣≣≣
≣|≣≣≣≣≣
≣≣|≣≣≣≣
≣≣≣|≣≣≣
≣|≣|≣≣≣≣
≣|≣≣|≣≣≣
≣≣|≣≣|≣≣
≣|≣|≣|≣≣≣
≣|≣|≣≣|≣≣
≣|≣|≣|≣|≣≣
≣|≣|≣|≣|≣|≣

Only increasing slowly:

|Width|Schedules|2^(n-1)|
|---|---|---|
|1|1|1|
|2|2|2|
|3|3|4|
|4|5|8|
|5|7|16|
|6|11|32|
|7|15|64|
|8|22|128|
|9|30|256|
|10|42|512|
|11|56|1024|
|12|77|2048|
|13|101|4096|
|14|135|8192|
|15|176|16384|
|16|231|32768|
|17|297|65536|
|18|385|131072|
|19|490|262144|
|20|627|524288|

Code to compute the above (unabashedly recursive, not memoizing/caching, slows down quickly with larger n. The SortedSet could be replaced by an array and “insertion sorting” if one wants “efficiency”)

import org.junit.jupiter.api.Test;

import java.util.*;
import java.util.stream.IntStream;

import static java.util.stream.Collectors.joining;

class CutSchedule implements Comparable<CutSchedule> {

    public List<Integer> increasingWidths = new ArrayList<>();

    public boolean verify() {
        if (increasingWidths.isEmpty()) {
            return false;
        }
        if (increasingWidths.get(0) <= 0) {
            return false;
        }
        for (int i = 1; i < increasingWidths.size(); i++) {
            if (increasingWidths.get(i - 1) > increasingWidths.get(i)) {
                return false;
            }
        }
        return true;
    }

    private static String toRodString(int width, char ch) {
        StringBuilder buf = new StringBuilder();
        IntStream.range(0, width).forEach(i -> buf.append(ch));
        return buf.toString();
    }

    public String toString(boolean numeric) {
        if (numeric) {
            return increasingWidths.stream().map(width -> Integer.toString(width)).collect(joining(","));
        } else {
            return increasingWidths.stream().map(width -> toRodString(width, '≣')).collect(joining("|"));
        }
    }

    public String toString() {
        return toString(false);
    }

    public int totalWidth() {
        return increasingWidths.stream().mapToInt(width -> width).sum();
    }

    public int cutCount() {
        return increasingWidths.size() - 1;
    }

    @Override
    public boolean equals(Object o) {
        if (o == null || !(o instanceof CutSchedule)) {
            return false;
        }
        return this.compareTo((CutSchedule) o) == 0;
    }

    @Override
    public int compareTo(CutSchedule o) {
        assert o != null;
        int widthDelta = this.totalWidth() - o.totalWidth();
        if (widthDelta != 0) {
            // if total width is smaller, the CutSchedule is "smaller"
            return widthDelta;
        }
        int cutCountDelta = this.cutCount() - o.cutCount();
        if (cutCountDelta != 0) {
            // if cut count is smaller, the CutSchedule is "smaller"
            return cutCountDelta;
        }
        for (int i = 0; i < cutCount(); i++) {
            int deltaCutWidth = this.increasingWidths.get(i) - o.increasingWidths.get(i);
            if (deltaCutWidth != 0) {
                // the first having a smaller cut at position i is "smaller"
                return deltaCutWidth;
            }
        }
        return 0;
    }
}

public class RodCuttingOptimization {

    private static void extendToFullWidthAndCollect(final SortedSet<CutSchedule> csSetForSmallerWidth, final int width, final int firstCutWidth, final Set<CutSchedule> res) {
        for (CutSchedule subCs : csSetForSmallerWidth) {
            assert subCs.verify();
            assert subCs.totalWidth() == width - firstCutWidth;
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(firstCutWidth);
            cs.increasingWidths.addAll(subCs.increasingWidths);
            res.add(cs);
        }
    }

    private static SortedSet<CutSchedule> generateAllCutsSchedulesForGivenNumCutsAndWidth(final int numCuts, final int width, final int minCutWidth) {
        assert numCuts >= 0;
        assert width > 0;
        assert minCutWidth > 0;
        SortedSet<CutSchedule> res = new TreeSet<>();
        if (numCuts == 0) {
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(width);
            res.add(cs);
        } else {
            // Make the first cut at increasingly larger positions. It must be the smallest cut made!
            IntStream.rangeClosed(minCutWidth, width / 2).forEach(firstCutWidth -> {
                SortedSet<CutSchedule> csSetForSmallerWidth =
                        Collections.unmodifiableSortedSet(
                                generateAllCutsSchedulesForGivenNumCutsAndWidth(
                                        numCuts - 1,
                                        width - firstCutWidth,
                                        firstCutWidth
                                ));
                extendToFullWidthAndCollect(csSetForSmallerWidth, width, firstCutWidth, res);
            });
        }
        return res;
    }

    private static void verifyAll(final Set<CutSchedule> csSet, int width, final Set<CutSchedule> mustNotContain) {
        csSet.stream().forEach(cs -> {
            assert cs.verify();
            assert cs.totalWidth() == width;
            assert !mustNotContain.contains(cs);
        });
    }

    private static SortedSet<CutSchedule> tryingAllCutsForWidth(final int width) {
        final int minNumCuts = 0;
        final int maxNumCuts = width - 1;
        SortedSet<CutSchedule> res = new TreeSet<>();
        IntStream.rangeClosed(minNumCuts, maxNumCuts).forEach(numCuts -> {
            Set<CutSchedule> csSetForWidth = generateAllCutsSchedulesForGivenNumCutsAndWidth(numCuts, width, 1);
            verifyAll(csSetForWidth, width, res);
            res.addAll(csSetForWidth);
        });
        return res;
    }

    private final static boolean withPrintout = false;

    @Test
    public void loopOverWidths() {
        final int minWidth = 1;
        final int maxWidth = 100;
        IntStream.rangeClosed(minWidth, maxWidth).forEach(width -> {
            SortedSet<CutSchedule> all = tryingAllCutsForWidth(width);
            System.out.println("Number of ways of cutting for width = " + width + ": " + all.size());
            if (withPrintout) {
                all.stream().forEach(cs -> System.out.println(cs.toString(false)));
            }
        });
    }

}

First Post!

venkats

venkats

Author of Programming Kotlin, Rediscovering JavaScript (and 6 other titles)

We can assume the given values are profit instead of revenue. The exponential time complexity also comes from the worst case scenario.

Where Next?

Popular Pragmatic Bookshelf topics Top

jimschubert
In Chapter 3, the source for index introduces Config on page 31, followed by more code including tests; Config isn’t introduced until pag...
New
jeffmcompsci
Title: Design and Build Great Web APIs - typo “https://company-atk.herokuapp.com/2258ie4t68jv” (page 19, third bullet in URL list) Typo:...
New
simonpeter
When I try the command to create a pair of migration files I get an error. user=&gt; (create-migration "guestbook") Execution error (Ill...
New
raul
Hi Travis! Thank you for the cool book! :slight_smile: I made a list of issues and thought I could post them chapter by chapter. I’m rev...
New
alanq
This isn’t directly about the book contents so maybe not the right forum…but in some of the code apps (e.g. turbo/06) it sends a TURBO_ST...
New
cro
I am working on the “Your Turn” for chapter one and building out the restart button talked about on page 27. It recommends looking into ...
New
hazardco
On page 78 the following code appears: &lt;%= link_to ‘Destroy’, product, class: ‘hover:underline’, method: :delete, data: { confirm...
New
Keton
When running the program in chapter 8, “Implementing Combat”, the printout Health before attack was never printed so I assumed something ...
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New
dachristenson
I’ve got to the end of Ch. 11, and the app runs, with all tabs displaying what they should – at first. After switching around between St...
New

Other popular topics Top

Devtalk
Reading something? Working on something? Planning something? Changing jobs even!? If you’re up for sharing, please let us know what you’...
1033 17470 383
New
AstonJ
I have seen the keycaps I want - they are due for a group-buy this week but won’t be delivered until October next year!!! :rofl: The Ser...
New
PragmaticBookshelf
“Finding the Boundaries” Hero’s Journey with Noel Rappin @noelrappin Even when you’re ultimately right about what the future ho...
New
DevotionGeo
The V Programming Language Simple language for building maintainable programs V is already mentioned couple of times in the forum, but I...
New
gagan7995
API 4 Path: /user/following/ Method: GET Description: Returns the list of all names of people whom the user follows Response [ { ...
New
New
husaindevelop
Inside our android webview app, we are trying to paste the copied content from another app eg (notes) using navigator.clipboard.readtext ...
New
PragmaticBookshelf
Author Spotlight: Karl Stolley @karlstolley Logic! Rhetoric! Prag! Wow, what a combination. In this spotlight, we sit down with Karl ...
New
hilfordjames
There appears to have been an update that has changed the terminology for what has previously been known as the Taskbar Overflow - this h...
New
PragmaticBookshelf
Author Spotlight: Tammy Coron @Paradox927 Gaming, and writing games in particular, is about passion, vision, experience, and immersio...
New

Latest in Functional Programming in Java, Second Edition

Functional Programming in Java, Second Edition Portal

Sub Categories: