dtonhofer

dtonhofer

Functional Programming in Java, Second Edition: p 148 "An optimization problem" & "Plain-Vanilla Recursion" problems

On page 148, “An optimization problem” we read:

We’ll employ a solution for a company that buys rods at wholesale and sells them at retail. They figured that by cutting the rods into different sizes, they could maximize profits. The price that the company can charge for different lengths of rod changes often, so the company wants us to write a program to reveal what the maximum profit would be for a given size of rod. 

The above is not computing the profit, but computing the revenue. The profit is revenue - expenses, but we don’t know the expenses, it might include manpower costs, machine costs etc.

The problem would also be more interesting if a rod of length 1 could only be sold at price 0 (i.e. it is wastage), at price 2 it’s too easy.

More seriously, on page 149, “Plain-Vanilla Recursion”, we read:

Continuing with this approach, we find that the maximum profit [revenue] for an arbitrary length n is the maximum of the profits [revenues] from each of the possible 2^(n-1) cuts length. That is, max(no cut, cut(1, n - 1), cut(2, n - 2), …), for a given length n.

It don’t understand the max() notation here, there should probably at least be revenue(.) of a cut schedule in there :thinking:

In any case, the 2^(n-1) is imprecise Not considering symmetries, each cut point at marginal width 1 of which there are n-1, for example for width = 6:

≣|≣|≣|≣|≣|≣

can be switched on or off, giving us indeed 2^(n-1) “cut schedules.”

But considering all symmetries (to collapse similar “cut schedules”, consider only “cut schedules” where the width of a cut is monotonically (but not strictly) increasing from left to right), the number of possible “cut schedules” for width = n is then given by

[A000041 - OEIS] - the number of partitions of n (the partition numbers)

(I didn’t find this by myself, I first wrote the program to list the schedules, then duckduckgoed the sequence)

For example for width = 6, there are only 11 distinct ways to cut:

Number of ways of cutting for width = 6: 11
≣≣≣≣≣≣
≣|≣≣≣≣≣
≣≣|≣≣≣≣
≣≣≣|≣≣≣
≣|≣|≣≣≣≣
≣|≣≣|≣≣≣
≣≣|≣≣|≣≣
≣|≣|≣|≣≣≣
≣|≣|≣≣|≣≣
≣|≣|≣|≣|≣≣
≣|≣|≣|≣|≣|≣

Only increasing slowly:

|Width|Schedules|2^(n-1)|
|---|---|---|
|1|1|1|
|2|2|2|
|3|3|4|
|4|5|8|
|5|7|16|
|6|11|32|
|7|15|64|
|8|22|128|
|9|30|256|
|10|42|512|
|11|56|1024|
|12|77|2048|
|13|101|4096|
|14|135|8192|
|15|176|16384|
|16|231|32768|
|17|297|65536|
|18|385|131072|
|19|490|262144|
|20|627|524288|

Code to compute the above (unabashedly recursive, not memoizing/caching, slows down quickly with larger n. The SortedSet could be replaced by an array and “insertion sorting” if one wants “efficiency”)

import org.junit.jupiter.api.Test;

import java.util.*;
import java.util.stream.IntStream;

import static java.util.stream.Collectors.joining;

class CutSchedule implements Comparable<CutSchedule> {

    public List<Integer> increasingWidths = new ArrayList<>();

    public boolean verify() {
        if (increasingWidths.isEmpty()) {
            return false;
        }
        if (increasingWidths.get(0) <= 0) {
            return false;
        }
        for (int i = 1; i < increasingWidths.size(); i++) {
            if (increasingWidths.get(i - 1) > increasingWidths.get(i)) {
                return false;
            }
        }
        return true;
    }

    private static String toRodString(int width, char ch) {
        StringBuilder buf = new StringBuilder();
        IntStream.range(0, width).forEach(i -> buf.append(ch));
        return buf.toString();
    }

    public String toString(boolean numeric) {
        if (numeric) {
            return increasingWidths.stream().map(width -> Integer.toString(width)).collect(joining(","));
        } else {
            return increasingWidths.stream().map(width -> toRodString(width, '≣')).collect(joining("|"));
        }
    }

    public String toString() {
        return toString(false);
    }

    public int totalWidth() {
        return increasingWidths.stream().mapToInt(width -> width).sum();
    }

    public int cutCount() {
        return increasingWidths.size() - 1;
    }

    @Override
    public boolean equals(Object o) {
        if (o == null || !(o instanceof CutSchedule)) {
            return false;
        }
        return this.compareTo((CutSchedule) o) == 0;
    }

    @Override
    public int compareTo(CutSchedule o) {
        assert o != null;
        int widthDelta = this.totalWidth() - o.totalWidth();
        if (widthDelta != 0) {
            // if total width is smaller, the CutSchedule is "smaller"
            return widthDelta;
        }
        int cutCountDelta = this.cutCount() - o.cutCount();
        if (cutCountDelta != 0) {
            // if cut count is smaller, the CutSchedule is "smaller"
            return cutCountDelta;
        }
        for (int i = 0; i < cutCount(); i++) {
            int deltaCutWidth = this.increasingWidths.get(i) - o.increasingWidths.get(i);
            if (deltaCutWidth != 0) {
                // the first having a smaller cut at position i is "smaller"
                return deltaCutWidth;
            }
        }
        return 0;
    }
}

public class RodCuttingOptimization {

    private static void extendToFullWidthAndCollect(final SortedSet<CutSchedule> csSetForSmallerWidth, final int width, final int firstCutWidth, final Set<CutSchedule> res) {
        for (CutSchedule subCs : csSetForSmallerWidth) {
            assert subCs.verify();
            assert subCs.totalWidth() == width - firstCutWidth;
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(firstCutWidth);
            cs.increasingWidths.addAll(subCs.increasingWidths);
            res.add(cs);
        }
    }

    private static SortedSet<CutSchedule> generateAllCutsSchedulesForGivenNumCutsAndWidth(final int numCuts, final int width, final int minCutWidth) {
        assert numCuts >= 0;
        assert width > 0;
        assert minCutWidth > 0;
        SortedSet<CutSchedule> res = new TreeSet<>();
        if (numCuts == 0) {
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(width);
            res.add(cs);
        } else {
            // Make the first cut at increasingly larger positions. It must be the smallest cut made!
            IntStream.rangeClosed(minCutWidth, width / 2).forEach(firstCutWidth -> {
                SortedSet<CutSchedule> csSetForSmallerWidth =
                        Collections.unmodifiableSortedSet(
                                generateAllCutsSchedulesForGivenNumCutsAndWidth(
                                        numCuts - 1,
                                        width - firstCutWidth,
                                        firstCutWidth
                                ));
                extendToFullWidthAndCollect(csSetForSmallerWidth, width, firstCutWidth, res);
            });
        }
        return res;
    }

    private static void verifyAll(final Set<CutSchedule> csSet, int width, final Set<CutSchedule> mustNotContain) {
        csSet.stream().forEach(cs -> {
            assert cs.verify();
            assert cs.totalWidth() == width;
            assert !mustNotContain.contains(cs);
        });
    }

    private static SortedSet<CutSchedule> tryingAllCutsForWidth(final int width) {
        final int minNumCuts = 0;
        final int maxNumCuts = width - 1;
        SortedSet<CutSchedule> res = new TreeSet<>();
        IntStream.rangeClosed(minNumCuts, maxNumCuts).forEach(numCuts -> {
            Set<CutSchedule> csSetForWidth = generateAllCutsSchedulesForGivenNumCutsAndWidth(numCuts, width, 1);
            verifyAll(csSetForWidth, width, res);
            res.addAll(csSetForWidth);
        });
        return res;
    }

    private final static boolean withPrintout = false;

    @Test
    public void loopOverWidths() {
        final int minWidth = 1;
        final int maxWidth = 100;
        IntStream.rangeClosed(minWidth, maxWidth).forEach(width -> {
            SortedSet<CutSchedule> all = tryingAllCutsForWidth(width);
            System.out.println("Number of ways of cutting for width = " + width + ": " + all.size());
            if (withPrintout) {
                all.stream().forEach(cs -> System.out.println(cs.toString(false)));
            }
        });
    }

}

First Post!

venkats

venkats

Author of Programming Kotlin, Rediscovering JavaScript (and 6 other titles)

We can assume the given values are profit instead of revenue. The exponential time complexity also comes from the worst case scenario.

Where Next?

Popular Pragmatic Bookshelf topics Top

telemachus
Python Testing With Pytest - Chapter 2, warnings for “unregistered custom marks” While running the smoke tests in Chapter 2, I get these...
New
sdmoralesma
Title: Web Development with Clojure, Third Edition - migrations/create not working: p159 When I execute the command: user=&gt; (create-...
New
HarryDeveloper
Hi @venkats, It has been mentioned in the description of ‘Supervisory Job’ title that 2 things as mentioned below result in the same eff...
New
cro
I am working on the “Your Turn” for chapter one and building out the restart button talked about on page 27. It recommends looking into ...
New
curtosis
Running mix deps.get in the sensor_hub directory fails with the following error: ** (Mix) No SSH public keys found in ~/.ssh. An ssh aut...
New
dsmith42
Hey there, I’m enjoying this book and have learned a few things alredayd. However, in Chapter 4 I believe we are meant to see the “&gt;...
New
jonmac
The allprojects block listed on page 245 produces the following error when syncing gradle: “org.gradle.api.GradleScriptException: A prob...
New
a.zampa
@mfazio23 I’m following the indications of the book and arriver ad chapter 10, but the app cannot be compiled due to an error in the Bas...
New
bjnord
Hello @herbert ! Trying to get the very first “Hello, Bracket Terminal!" example to run (p. 53). I develop on an Amazon EC2 instance runn...
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New

Other popular topics Top

AstonJ
I’ve been hearing quite a lot of comments relating to the sound of a keyboard, with one of the most desirable of these called ‘thock’, he...
New
New
AstonJ
This looks like a stunning keycap set :orange_heart: A LEGENDARY KEYBOARD LIVES ON When you bought an Apple Macintosh computer in the e...
New
dimitarvp
Small essay with thoughts on macOS vs. Linux: I know @Exadra37 is just waiting around the corner to scream at me “I TOLD YOU SO!!!” but I...
New
New
PragmaticBookshelf
Build efficient applications that exploit the unique benefits of a pure functional language, learning from an engineer who uses Haskell t...
New
PragmaticBookshelf
Author Spotlight Mike Riley @mriley This month, we turn the spotlight on Mike Riley, author of Portable Python Projects. Mike’s book ...
New
PragmaticBookshelf
Author Spotlight Rebecca Skinner @RebeccaSkinner Welcome to our latest author spotlight, where we sit down with Rebecca Skinner, auth...
New
PragmaticBookshelf
Author Spotlight: Peter Ullrich @PJUllrich Data is at the core of every business, but it is useless if nobody can access and analyze ...
New
CommunityNews
A Brief Review of the Minisforum V3 AMD Tablet. Update: I have created an awesome-minisforum-v3 GitHub repository to list information fo...
New

Latest in Functional Programming in Java, Second Edition

Functional Programming in Java, Second Edition Portal

Sub Categories: