dtonhofer

dtonhofer

Functional Programming in Java, Second Edition: p 148 "An optimization problem" & "Plain-Vanilla Recursion" problems

On page 148, “An optimization problem” we read:

We’ll employ a solution for a company that buys rods at wholesale and sells them at retail. They figured that by cutting the rods into different sizes, they could maximize profits. The price that the company can charge for different lengths of rod changes often, so the company wants us to write a program to reveal what the maximum profit would be for a given size of rod. 

The above is not computing the profit, but computing the revenue. The profit is revenue - expenses, but we don’t know the expenses, it might include manpower costs, machine costs etc.

The problem would also be more interesting if a rod of length 1 could only be sold at price 0 (i.e. it is wastage), at price 2 it’s too easy.

More seriously, on page 149, “Plain-Vanilla Recursion”, we read:

Continuing with this approach, we find that the maximum profit [revenue] for an arbitrary length n is the maximum of the profits [revenues] from each of the possible 2^(n-1) cuts length. That is, max(no cut, cut(1, n - 1), cut(2, n - 2), …), for a given length n.

It don’t understand the max() notation here, there should probably at least be revenue(.) of a cut schedule in there :thinking:

In any case, the 2^(n-1) is imprecise Not considering symmetries, each cut point at marginal width 1 of which there are n-1, for example for width = 6:

≣|≣|≣|≣|≣|≣

can be switched on or off, giving us indeed 2^(n-1) “cut schedules.”

But considering all symmetries (to collapse similar “cut schedules”, consider only “cut schedules” where the width of a cut is monotonically (but not strictly) increasing from left to right), the number of possible “cut schedules” for width = n is then given by

[A000041 - OEIS] - the number of partitions of n (the partition numbers)

(I didn’t find this by myself, I first wrote the program to list the schedules, then duckduckgoed the sequence)

For example for width = 6, there are only 11 distinct ways to cut:

Number of ways of cutting for width = 6: 11
≣≣≣≣≣≣
≣|≣≣≣≣≣
≣≣|≣≣≣≣
≣≣≣|≣≣≣
≣|≣|≣≣≣≣
≣|≣≣|≣≣≣
≣≣|≣≣|≣≣
≣|≣|≣|≣≣≣
≣|≣|≣≣|≣≣
≣|≣|≣|≣|≣≣
≣|≣|≣|≣|≣|≣

Only increasing slowly:

|Width|Schedules|2^(n-1)|
|---|---|---|
|1|1|1|
|2|2|2|
|3|3|4|
|4|5|8|
|5|7|16|
|6|11|32|
|7|15|64|
|8|22|128|
|9|30|256|
|10|42|512|
|11|56|1024|
|12|77|2048|
|13|101|4096|
|14|135|8192|
|15|176|16384|
|16|231|32768|
|17|297|65536|
|18|385|131072|
|19|490|262144|
|20|627|524288|

Code to compute the above (unabashedly recursive, not memoizing/caching, slows down quickly with larger n. The SortedSet could be replaced by an array and “insertion sorting” if one wants “efficiency”)

import org.junit.jupiter.api.Test;

import java.util.*;
import java.util.stream.IntStream;

import static java.util.stream.Collectors.joining;

class CutSchedule implements Comparable<CutSchedule> {

    public List<Integer> increasingWidths = new ArrayList<>();

    public boolean verify() {
        if (increasingWidths.isEmpty()) {
            return false;
        }
        if (increasingWidths.get(0) <= 0) {
            return false;
        }
        for (int i = 1; i < increasingWidths.size(); i++) {
            if (increasingWidths.get(i - 1) > increasingWidths.get(i)) {
                return false;
            }
        }
        return true;
    }

    private static String toRodString(int width, char ch) {
        StringBuilder buf = new StringBuilder();
        IntStream.range(0, width).forEach(i -> buf.append(ch));
        return buf.toString();
    }

    public String toString(boolean numeric) {
        if (numeric) {
            return increasingWidths.stream().map(width -> Integer.toString(width)).collect(joining(","));
        } else {
            return increasingWidths.stream().map(width -> toRodString(width, '≣')).collect(joining("|"));
        }
    }

    public String toString() {
        return toString(false);
    }

    public int totalWidth() {
        return increasingWidths.stream().mapToInt(width -> width).sum();
    }

    public int cutCount() {
        return increasingWidths.size() - 1;
    }

    @Override
    public boolean equals(Object o) {
        if (o == null || !(o instanceof CutSchedule)) {
            return false;
        }
        return this.compareTo((CutSchedule) o) == 0;
    }

    @Override
    public int compareTo(CutSchedule o) {
        assert o != null;
        int widthDelta = this.totalWidth() - o.totalWidth();
        if (widthDelta != 0) {
            // if total width is smaller, the CutSchedule is "smaller"
            return widthDelta;
        }
        int cutCountDelta = this.cutCount() - o.cutCount();
        if (cutCountDelta != 0) {
            // if cut count is smaller, the CutSchedule is "smaller"
            return cutCountDelta;
        }
        for (int i = 0; i < cutCount(); i++) {
            int deltaCutWidth = this.increasingWidths.get(i) - o.increasingWidths.get(i);
            if (deltaCutWidth != 0) {
                // the first having a smaller cut at position i is "smaller"
                return deltaCutWidth;
            }
        }
        return 0;
    }
}

public class RodCuttingOptimization {

    private static void extendToFullWidthAndCollect(final SortedSet<CutSchedule> csSetForSmallerWidth, final int width, final int firstCutWidth, final Set<CutSchedule> res) {
        for (CutSchedule subCs : csSetForSmallerWidth) {
            assert subCs.verify();
            assert subCs.totalWidth() == width - firstCutWidth;
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(firstCutWidth);
            cs.increasingWidths.addAll(subCs.increasingWidths);
            res.add(cs);
        }
    }

    private static SortedSet<CutSchedule> generateAllCutsSchedulesForGivenNumCutsAndWidth(final int numCuts, final int width, final int minCutWidth) {
        assert numCuts >= 0;
        assert width > 0;
        assert minCutWidth > 0;
        SortedSet<CutSchedule> res = new TreeSet<>();
        if (numCuts == 0) {
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(width);
            res.add(cs);
        } else {
            // Make the first cut at increasingly larger positions. It must be the smallest cut made!
            IntStream.rangeClosed(minCutWidth, width / 2).forEach(firstCutWidth -> {
                SortedSet<CutSchedule> csSetForSmallerWidth =
                        Collections.unmodifiableSortedSet(
                                generateAllCutsSchedulesForGivenNumCutsAndWidth(
                                        numCuts - 1,
                                        width - firstCutWidth,
                                        firstCutWidth
                                ));
                extendToFullWidthAndCollect(csSetForSmallerWidth, width, firstCutWidth, res);
            });
        }
        return res;
    }

    private static void verifyAll(final Set<CutSchedule> csSet, int width, final Set<CutSchedule> mustNotContain) {
        csSet.stream().forEach(cs -> {
            assert cs.verify();
            assert cs.totalWidth() == width;
            assert !mustNotContain.contains(cs);
        });
    }

    private static SortedSet<CutSchedule> tryingAllCutsForWidth(final int width) {
        final int minNumCuts = 0;
        final int maxNumCuts = width - 1;
        SortedSet<CutSchedule> res = new TreeSet<>();
        IntStream.rangeClosed(minNumCuts, maxNumCuts).forEach(numCuts -> {
            Set<CutSchedule> csSetForWidth = generateAllCutsSchedulesForGivenNumCutsAndWidth(numCuts, width, 1);
            verifyAll(csSetForWidth, width, res);
            res.addAll(csSetForWidth);
        });
        return res;
    }

    private final static boolean withPrintout = false;

    @Test
    public void loopOverWidths() {
        final int minWidth = 1;
        final int maxWidth = 100;
        IntStream.rangeClosed(minWidth, maxWidth).forEach(width -> {
            SortedSet<CutSchedule> all = tryingAllCutsForWidth(width);
            System.out.println("Number of ways of cutting for width = " + width + ": " + all.size());
            if (withPrintout) {
                all.stream().forEach(cs -> System.out.println(cs.toString(false)));
            }
        });
    }

}

First Post!

venkats

venkats

Author of Programming Kotlin, Rediscovering JavaScript (and 6 other titles)

We can assume the given values are profit instead of revenue. The exponential time complexity also comes from the worst case scenario.

Where Next?

Popular Pragmatic Bookshelf topics Top

jeffmcompsci
Title: Design and Build Great Web APIs - typo “https://company-atk.herokuapp.com/2258ie4t68jv” (page 19, third bullet in URL list) Typo:...
New
yulkin
your book suggests to use Image.toByteData() to convert image to bytes, however I get the following error: "the getter ‘toByteData’ isn’t...
New
jamis
The following is cross-posted from the original Ray Tracer Challenge forum, from a post by garfieldnate. I’m cross-posting it so that the...
New
sdmoralesma
Title: Web Development with Clojure, Third Edition - migrations/create not working: p159 When I execute the command: user=&gt; (create-...
New
alanq
This isn’t directly about the book contents so maybe not the right forum…but in some of the code apps (e.g. turbo/06) it sends a TURBO_ST...
New
brunogirin
When I run the coverage example to report on missing lines, I get: pytest --cov=cards --report=term-missing ch7 ERROR: usage: pytest [op...
New
Charles
In general, the book isn’t yet updated for Phoenix version 1.6. On page 18 of the book, the authors indicate that an auto generated of ro...
New
tkhobbes
After some hassle, I was able to finally run bin/setup, now I have started the rails server but I get this error message right when I vis...
New
ggerico
I got this error when executing the plot files on macOS Ventura 13.0.1 with Python 3.10.8 and matplotlib 3.6.1: programming_ML/code/03_...
New
dachristenson
I’ve got to the end of Ch. 11, and the app runs, with all tabs displaying what they should – at first. After switching around between St...
New

Other popular topics Top

New
Exadra37
I am thinking in building or buy a desktop computer for programing, both professionally and on my free time, and my choice of OS is Linux...
New
DevotionGeo
I know that -t flag is used along with -i flag for getting an interactive shell. But I cannot digest what the man page for docker run com...
New
AstonJ
Curious to know which languages and frameworks you’re all thinking about learning next :upside_down_face: Perhaps if there’s enough peop...
New
AstonJ
I ended up cancelling my Moonlander order as I think it’s just going to be a bit too bulky for me. I think the Planck and the Preonic (o...
New
AstonJ
In case anyone else is wondering why Ruby 3 doesn’t show when you do asdf list-all ruby :man_facepalming: do this first: asdf plugin-upd...
New
AstonJ
Continuing the discussion from Thinking about learning Crystal, let’s discuss - I was wondering which languages don’t GC - maybe we can c...
New
New
husaindevelop
Inside our android webview app, we are trying to paste the copied content from another app eg (notes) using navigator.clipboard.readtext ...
New
RobertRichards
Hair Salon Games for Girls Fun Girls Hair Saloon game is mainly developed for kids. This game allows users to select virtual avatars to ...
New

Latest in Functional Programming in Java, Second Edition

Functional Programming in Java, Second Edition Portal

Sub Categories: