dtonhofer

dtonhofer

Functional Programming in Java, Second Edition: p 148 "An optimization problem" & "Plain-Vanilla Recursion" problems

On page 148, “An optimization problem” we read:

We’ll employ a solution for a company that buys rods at wholesale and sells them at retail. They figured that by cutting the rods into different sizes, they could maximize profits. The price that the company can charge for different lengths of rod changes often, so the company wants us to write a program to reveal what the maximum profit would be for a given size of rod. 

The above is not computing the profit, but computing the revenue. The profit is revenue - expenses, but we don’t know the expenses, it might include manpower costs, machine costs etc.

The problem would also be more interesting if a rod of length 1 could only be sold at price 0 (i.e. it is wastage), at price 2 it’s too easy.

More seriously, on page 149, “Plain-Vanilla Recursion”, we read:

Continuing with this approach, we find that the maximum profit [revenue] for an arbitrary length n is the maximum of the profits [revenues] from each of the possible 2^(n-1) cuts length. That is, max(no cut, cut(1, n - 1), cut(2, n - 2), …), for a given length n.

It don’t understand the max() notation here, there should probably at least be revenue(.) of a cut schedule in there :thinking:

In any case, the 2^(n-1) is imprecise Not considering symmetries, each cut point at marginal width 1 of which there are n-1, for example for width = 6:

≣|≣|≣|≣|≣|≣

can be switched on or off, giving us indeed 2^(n-1) “cut schedules.”

But considering all symmetries (to collapse similar “cut schedules”, consider only “cut schedules” where the width of a cut is monotonically (but not strictly) increasing from left to right), the number of possible “cut schedules” for width = n is then given by

[A000041 - OEIS] - the number of partitions of n (the partition numbers)

(I didn’t find this by myself, I first wrote the program to list the schedules, then duckduckgoed the sequence)

For example for width = 6, there are only 11 distinct ways to cut:

Number of ways of cutting for width = 6: 11
≣≣≣≣≣≣
≣|≣≣≣≣≣
≣≣|≣≣≣≣
≣≣≣|≣≣≣
≣|≣|≣≣≣≣
≣|≣≣|≣≣≣
≣≣|≣≣|≣≣
≣|≣|≣|≣≣≣
≣|≣|≣≣|≣≣
≣|≣|≣|≣|≣≣
≣|≣|≣|≣|≣|≣

Only increasing slowly:

|Width|Schedules|2^(n-1)|
|---|---|---|
|1|1|1|
|2|2|2|
|3|3|4|
|4|5|8|
|5|7|16|
|6|11|32|
|7|15|64|
|8|22|128|
|9|30|256|
|10|42|512|
|11|56|1024|
|12|77|2048|
|13|101|4096|
|14|135|8192|
|15|176|16384|
|16|231|32768|
|17|297|65536|
|18|385|131072|
|19|490|262144|
|20|627|524288|

Code to compute the above (unabashedly recursive, not memoizing/caching, slows down quickly with larger n. The SortedSet could be replaced by an array and “insertion sorting” if one wants “efficiency”)

import org.junit.jupiter.api.Test;

import java.util.*;
import java.util.stream.IntStream;

import static java.util.stream.Collectors.joining;

class CutSchedule implements Comparable<CutSchedule> {

    public List<Integer> increasingWidths = new ArrayList<>();

    public boolean verify() {
        if (increasingWidths.isEmpty()) {
            return false;
        }
        if (increasingWidths.get(0) <= 0) {
            return false;
        }
        for (int i = 1; i < increasingWidths.size(); i++) {
            if (increasingWidths.get(i - 1) > increasingWidths.get(i)) {
                return false;
            }
        }
        return true;
    }

    private static String toRodString(int width, char ch) {
        StringBuilder buf = new StringBuilder();
        IntStream.range(0, width).forEach(i -> buf.append(ch));
        return buf.toString();
    }

    public String toString(boolean numeric) {
        if (numeric) {
            return increasingWidths.stream().map(width -> Integer.toString(width)).collect(joining(","));
        } else {
            return increasingWidths.stream().map(width -> toRodString(width, '≣')).collect(joining("|"));
        }
    }

    public String toString() {
        return toString(false);
    }

    public int totalWidth() {
        return increasingWidths.stream().mapToInt(width -> width).sum();
    }

    public int cutCount() {
        return increasingWidths.size() - 1;
    }

    @Override
    public boolean equals(Object o) {
        if (o == null || !(o instanceof CutSchedule)) {
            return false;
        }
        return this.compareTo((CutSchedule) o) == 0;
    }

    @Override
    public int compareTo(CutSchedule o) {
        assert o != null;
        int widthDelta = this.totalWidth() - o.totalWidth();
        if (widthDelta != 0) {
            // if total width is smaller, the CutSchedule is "smaller"
            return widthDelta;
        }
        int cutCountDelta = this.cutCount() - o.cutCount();
        if (cutCountDelta != 0) {
            // if cut count is smaller, the CutSchedule is "smaller"
            return cutCountDelta;
        }
        for (int i = 0; i < cutCount(); i++) {
            int deltaCutWidth = this.increasingWidths.get(i) - o.increasingWidths.get(i);
            if (deltaCutWidth != 0) {
                // the first having a smaller cut at position i is "smaller"
                return deltaCutWidth;
            }
        }
        return 0;
    }
}

public class RodCuttingOptimization {

    private static void extendToFullWidthAndCollect(final SortedSet<CutSchedule> csSetForSmallerWidth, final int width, final int firstCutWidth, final Set<CutSchedule> res) {
        for (CutSchedule subCs : csSetForSmallerWidth) {
            assert subCs.verify();
            assert subCs.totalWidth() == width - firstCutWidth;
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(firstCutWidth);
            cs.increasingWidths.addAll(subCs.increasingWidths);
            res.add(cs);
        }
    }

    private static SortedSet<CutSchedule> generateAllCutsSchedulesForGivenNumCutsAndWidth(final int numCuts, final int width, final int minCutWidth) {
        assert numCuts >= 0;
        assert width > 0;
        assert minCutWidth > 0;
        SortedSet<CutSchedule> res = new TreeSet<>();
        if (numCuts == 0) {
            CutSchedule cs = new CutSchedule();
            cs.increasingWidths.add(width);
            res.add(cs);
        } else {
            // Make the first cut at increasingly larger positions. It must be the smallest cut made!
            IntStream.rangeClosed(minCutWidth, width / 2).forEach(firstCutWidth -> {
                SortedSet<CutSchedule> csSetForSmallerWidth =
                        Collections.unmodifiableSortedSet(
                                generateAllCutsSchedulesForGivenNumCutsAndWidth(
                                        numCuts - 1,
                                        width - firstCutWidth,
                                        firstCutWidth
                                ));
                extendToFullWidthAndCollect(csSetForSmallerWidth, width, firstCutWidth, res);
            });
        }
        return res;
    }

    private static void verifyAll(final Set<CutSchedule> csSet, int width, final Set<CutSchedule> mustNotContain) {
        csSet.stream().forEach(cs -> {
            assert cs.verify();
            assert cs.totalWidth() == width;
            assert !mustNotContain.contains(cs);
        });
    }

    private static SortedSet<CutSchedule> tryingAllCutsForWidth(final int width) {
        final int minNumCuts = 0;
        final int maxNumCuts = width - 1;
        SortedSet<CutSchedule> res = new TreeSet<>();
        IntStream.rangeClosed(minNumCuts, maxNumCuts).forEach(numCuts -> {
            Set<CutSchedule> csSetForWidth = generateAllCutsSchedulesForGivenNumCutsAndWidth(numCuts, width, 1);
            verifyAll(csSetForWidth, width, res);
            res.addAll(csSetForWidth);
        });
        return res;
    }

    private final static boolean withPrintout = false;

    @Test
    public void loopOverWidths() {
        final int minWidth = 1;
        final int maxWidth = 100;
        IntStream.rangeClosed(minWidth, maxWidth).forEach(width -> {
            SortedSet<CutSchedule> all = tryingAllCutsForWidth(width);
            System.out.println("Number of ways of cutting for width = " + width + ": " + all.size());
            if (withPrintout) {
                all.stream().forEach(cs -> System.out.println(cs.toString(false)));
            }
        });
    }

}

First Post!

venkats

venkats

Author of Programming Kotlin, Rediscovering JavaScript (and 6 other titles)

We can assume the given values are profit instead of revenue. The exponential time complexity also comes from the worst case scenario.

Where Next?

Popular Pragmatic Bookshelf topics Top

iPaul
page 37 ANTLRInputStream input = new ANTLRInputStream(is); as of ANTLR 4 .8 should be: CharStream stream = CharStreams.fromStream(i...
New
telemachus
Python Testing With Pytest - Chapter 2, warnings for “unregistered custom marks” While running the smoke tests in Chapter 2, I get these...
New
GilWright
Working through the steps (checking that the Info,plist matches exactly), run the demo game and what appears is grey but does not fill th...
New
yulkin
your book suggests to use Image.toByteData() to convert image to bytes, however I get the following error: "the getter ‘toByteData’ isn’t...
New
jamis
The following is cross-posted from the original Ray Tracer Challenge forum, from a post by garfieldnate. I’m cross-posting it so that the...
New
mikecargal
Title: Hands-On Rust (Chap 8 (Adding a Heads Up Display) It looks like ​.with_simple_console_no_bg​(SCREEN_WIDTH*2, SCREEN_HEIGHT*2...
New
gilesdotcodes
In case this helps anyone, I’ve had issues setting up the rails source code. Here were the solutions: In Gemfile, change gem 'rails' t...
New
leonW
I ran this command after installing the sample application: $ cards add do something --owner Brian And got a file not found error: Fil...
New
rainforest
Hi, I’ve got a question about the implementation of PubSub when using a Phoenix.Socket.Transport behaviour rather than channels. Before ...
New
dachristenson
@mfazio23 Android Studio will not accept anything I do when trying to use the Transformations class, as described on pp. 140-141. Googl...
New

Other popular topics Top

DevotionGeo
I know that these benchmarks might not be the exact picture of real-world scenario, but still I expect a Rust web framework performing a ...
New
AstonJ
You might be thinking we should just ask who’s not using VSCode :joy: however there are some new additions in the space that might give V...
New
Exadra37
I am asking for any distro that only has the bare-bones to be able to get a shell in the server and then just install the packages as we ...
New
Maartz
Hi folks, I don’t know if I saw this here but, here’s a new programming language, called Roc Reminds me a bit of Elm and thus Haskell. ...
New
mafinar
This is going to be a long an frequently posted thread. While talking to a friend of mine who has taken data structure and algorithm cou...
New
PragmaticBookshelf
Author Spotlight Rebecca Skinner @RebeccaSkinner Welcome to our latest author spotlight, where we sit down with Rebecca Skinner, auth...
New
New
New
PragmaticBookshelf
Author Spotlight: VM Brasseur @vmbrasseur We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
New

Latest in Functional Programming in Java, Second Edition

Functional Programming in Java, Second Edition Portal

Sub Categories: