wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

jon
Some minor things in the paper edition that says “3 2020” on the title page verso, not mentioned in the book’s errata online: p. 186 But...
New
iPaul
page 37 ANTLRInputStream input = new ANTLRInputStream(is); as of ANTLR 4 .8 should be: CharStream stream = CharStreams.fromStream(i...
New
belgoros
Following the steps described in Chapter 6 of the book, I’m stuck with running the migration as described on page 84: bundle exec sequel...
New
telemachus
Python Testing With Pytest - Chapter 2, warnings for “unregistered custom marks” While running the smoke tests in Chapter 2, I get these...
New
Alexandr
Hi everyone! There is an error on the page 71 in the book “Programming machine learning from coding to depp learning” P. Perrotta. You c...
New
Mmm
Hi, build fails on: bracket-lib = “~0.8.1” when running on Mac Mini M1 Rust version 1.5.0: Compiling winit v0.22.2 error[E0308]: mi...
New
JohnS
I can’t setup the Rails source code. This happens in a working directory containing multiple (postgres) Rails apps. With: ruby-3.0.0 s...
New
AndyDavis3416
@noelrappin Running the webpack dev server, I receive the following warning: ERROR in tsconfig.json TS18003: No inputs were found in c...
New
rainforest
Hi, I’ve got a question about the implementation of PubSub when using a Phoenix.Socket.Transport behaviour rather than channels. Before ...
New
mert
AWDWR 7, page 152, page 153: Hello everyone, I’m a little bit lost on the hotwire part. I didn’t fully understand it. On page 152 @rub...
New

Other popular topics Top

AstonJ
If it’s a mechanical keyboard, which switches do you have? Would you recommend it? Why? What will your next keyboard be? Pics always w...
New
AstonJ
I ended up cancelling my Moonlander order as I think it’s just going to be a bit too bulky for me. I think the Planck and the Preonic (o...
New
AstonJ
If you are experiencing Rails console using 100% CPU on your dev machine, then updating your development and test gems might fix the issu...
New
AstonJ
Continuing the discussion from Thinking about learning Crystal, let’s discuss - I was wondering which languages don’t GC - maybe we can c...
New
PragmaticBookshelf
Create efficient, elegant software tests in pytest, Python's most powerful testing framework. Brian Okken @brianokken Edited by Kat...
New
AstonJ
Biggest jackpot ever apparently! :upside_down_face: I don’t (usually) gamble/play the lottery, but working on a program to predict the...
New
Maartz
Hi folks, I don’t know if I saw this here but, here’s a new programming language, called Roc Reminds me a bit of Elm and thus Haskell. ...
New
AstonJ
If you want a quick and easy way to block any website on your Mac using Little Snitch simply… File > New Rule: And select Deny, O...
New
First poster: AstonJ
Jan | Rethink the Computer. Jan turns your computer into an AI machine by running LLMs locally on your computer. It’s a privacy-focus, l...
New
AstonJ
This is cool! DEEPSEEK-V3 ON M4 MAC: BLAZING FAST INFERENCE ON APPLE SILICON We just witnessed something incredible: the largest open-s...
New

Sub Categories: