wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

jimmykiang
This test is broken right out of the box… — FAIL: TestAgent (7.82s) agent_test.go:77: Error Trace: agent_test.go:77 agent_test.go:...
New
jesse050717
Title: Web Development with Clojure, Third Edition, pg 116 Hi - I just started chapter 5 and I am stuck on page 116 while trying to star...
New
HarryDeveloper
Hi @venkats, It has been mentioned in the description of ‘Supervisory Job’ title that 2 things as mentioned below result in the same eff...
New
joepstender
The generated iex result below should list products instead of product for the metadata. (page 67) iex> product = %Product{} %Pento....
New
jeremyhuiskamp
Title: Web Development with Clojure, Third Edition, vB17.0 (p9) The create table guestbook syntax suggested doesn’t seem to be accepted ...
New
digitalbias
Title: Build a Weather Station with Elixir and Nerves: Problem connecting to Postgres with Grafana on (page 64) If you follow the defau...
New
AufHe
I’m a newbie to Rails 7 and have hit an issue with the bin/Dev script mentioned on pages 112-113. Iteration A1 - Seeing the list of prod...
New
tkhobbes
After some hassle, I was able to finally run bin/setup, now I have started the rails server but I get this error message right when I vis...
New
EdBorn
Title: Agile Web Development with Rails 7: (page 70) I am running windows 11 pro with rails 7.0.3 and ruby 3.1.2p20 (2022-04-12 revision...
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New

Other popular topics Top

wolf4earth
@AstonJ prompted me to open this topic after I mentioned in the lockdown thread how I started to do a lot more for my fitness. https://f...
New
PragmaticBookshelf
Tailwind CSS is an exciting new CSS framework that allows you to design your site by composing simple utility classes to create complex e...
New
AstonJ
Saw this on TikTok of all places! :lol: Anyone heard of them before? Lite:
New
AstonJ
If you get Can't find emacs in your PATH when trying to install Doom Emacs on your Mac you… just… need to install Emacs first! :lol: bre...
New
PragmaticBookshelf
Build efficient applications that exploit the unique benefits of a pure functional language, learning from an engineer who uses Haskell t...
New
New
PragmaticBookshelf
Author Spotlight: VM Brasseur @vmbrasseur We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
New
AstonJ
This is cool! DEEPSEEK-V3 ON M4 MAC: BLAZING FAST INFERENCE ON APPLE SILICON We just witnessed something incredible: the largest open-s...
New
Fl4m3Ph03n1x
Background Lately I am in a quest to find a good quality TTS ai generation tool to run locally in order to create audio for some videos I...
New

Sub Categories: