wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

jimmykiang
This test is broken right out of the box… — FAIL: TestAgent (7.82s) agent_test.go:77: Error Trace: agent_test.go:77 agent_test.go:...
New
jesse050717
Title: Web Development with Clojure, Third Edition, pg 116 Hi - I just started chapter 5 and I am stuck on page 116 while trying to star...
New
herminiotorres
Hi @Margaret , On page VII the book tells us the example and snippets will be all using Elixir version 1.11 But on page 3 almost the en...
New
Mmm
Hi, build fails on: bracket-lib = “~0.8.1” when running on Mac Mini M1 Rust version 1.5.0: Compiling winit v0.22.2 error[E0308]: mi...
New
raul
Page 28: It implements io.ReaderAt on the store type. Sorry if it’s a dumb question but was the io.ReaderAt supposed to be io.ReadAt? ...
New
herminiotorres
Hi! I know not the intentions behind this narrative when called, on page XI: mount() |> handle_event() |> render() but the correc...
New
adamwoolhether
When trying to generate the protobuf .go file, I receive this error: Unknown flag: --go_opt libprotoc 3.12.3 MacOS 11.3.1 Googling ...
New
leonW
I ran this command after installing the sample application: $ cards add do something --owner Brian And got a file not found error: Fil...
New
creminology
Skimming ahead, much of the following is explained in Chapter 3, but new readers (like me!) will hit a roadblock in Chapter 2 with their ...
New
SlowburnAZ
Getting an error when installing the dependencies at the start of this chapter: could not compile dependency :exla, "mix compile" failed...
New

Other popular topics Top

Devtalk
Reading something? Working on something? Planning something? Changing jobs even!? If you’re up for sharing, please let us know what you’...
1045 20596 392
New
brentjanderson
Bought the Moonlander mechanical keyboard. Cherry Brown MX switches. Arms and wrists have been hurting enough that it’s time I did someth...
New
AstonJ
There’s a whole world of custom keycaps out there that I didn’t know existed! Check out all of our Keycaps threads here: https://forum....
New
New
AstonJ
I ended up cancelling my Moonlander order as I think it’s just going to be a bit too bulky for me. I think the Planck and the Preonic (o...
New
mafinar
Crystal recently reached version 1. I had been following it for awhile but never got to really learn it. Most languages I picked up out o...
New
AstonJ
Was just curious to see if any were around, found this one: I got 51/100: Not sure if it was meant to buy I am sure at times the b...
New
AstonJ
This is a very quick guide, you just need to: Download LM Studio: https://lmstudio.ai/ Click on search Type DeepSeek, then select the o...
New
Margaret
Ask Me Anything with Mark Volkmann @mvolkmann On February 24 and 25, we are giving you a chance to ask questions of PragProg author M...
New
PragmaticBookshelf
A concise guide to MySQL 9 database administration, covering fundamental concepts, techniques, and best practices. Neil Smyth MySQL...
New

Sub Categories: