wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

jon
Some minor things in the paper edition that says “3 2020” on the title page verso, not mentioned in the book’s errata online: p. 186 But...
New
telemachus
Python Testing With Pytest - Chapter 2, warnings for “unregistered custom marks” While running the smoke tests in Chapter 2, I get these...
New
rmurray10127
Title: Intuitive Python: docker run… denied error (page 2) Attempted to run the docker command in both CLI and Powershell PS C:\Users\r...
New
AndyDavis3416
@noelrappin Running the webpack dev server, I receive the following warning: ERROR in tsconfig.json TS18003: No inputs were found in c...
New
jskubick
I’m under the impression that when the reader gets to page 136 (“View Data with the Database Inspector”), the code SHOULD be able to buil...
New
jskubick
I found an issue in Chapter 7 regarding android:backgroundTint vs app:backgroundTint. How to replicate: load chapter-7 from zipfile i...
New
brunogirin
When installing Cards as an editable package, I get the following error: ERROR: File “setup.py” not found. Directory cannot be installe...
New
New
creminology
Skimming ahead, much of the following is explained in Chapter 3, but new readers (like me!) will hit a roadblock in Chapter 2 with their ...
New
rainforest
Hi, I’ve got a question about the implementation of PubSub when using a Phoenix.Socket.Transport behaviour rather than channels. Before ...
New

Other popular topics Top

wolf4earth
@AstonJ prompted me to open this topic after I mentioned in the lockdown thread how I started to do a lot more for my fitness. https://f...
New
AstonJ
Or looking forward to? :nerd_face:
490 12945 266
New
DevotionGeo
I know that -t flag is used along with -i flag for getting an interactive shell. But I cannot digest what the man page for docker run com...
New
AstonJ
poll poll Be sure to check out @Dusty’s article posted here: An Introduction to Alternative Keyboard Layouts It’s one of the best write-...
New
dimitarvp
Small essay with thoughts on macOS vs. Linux: I know @Exadra37 is just waiting around the corner to scream at me “I TOLD YOU SO!!!” but I...
New
mafinar
This is going to be a long an frequently posted thread. While talking to a friend of mine who has taken data structure and algorithm cou...
New
New
CommunityNews
A Brief Review of the Minisforum V3 AMD Tablet. Update: I have created an awesome-minisforum-v3 GitHub repository to list information fo...
New
AstonJ
If you’re getting errors like this: psql: error: connection to server on socket “/tmp/.s.PGSQL.5432” failed: No such file or directory ...
New
RobertRichards
Hair Salon Games for Girls Fun Girls Hair Saloon game is mainly developed for kids. This game allows users to select virtual avatars to ...
New

Sub Categories: