wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

New
jamis
The following is cross-posted from the original Ray Tracer Challenge forum, from a post by garfieldnate. I’m cross-posting it so that the...
New
joepstender
The generated iex result below should list products instead of product for the metadata. (page 67) iex> product = %Product{} %Pento....
New
alanq
This isn’t directly about the book contents so maybe not the right forum…but in some of the code apps (e.g. turbo/06) it sends a TURBO_ST...
New
swlaschin
The book has the same “Problem space/Solution space” diagram on page 18 as is on page 17. The correct Problem/Solution space diagrams ar...
New
rainforest
Hi, I’ve got a question about the implementation of PubSub when using a Phoenix.Socket.Transport behaviour rather than channels. Before ...
New
andreheijstek
After running /bin/setup, the first error was: The foreman' command exists in these Ruby versions: That was easy to fix: gem install fore...
New
dtonhofer
@parrt In the context of Chapter 4.3, the grammar Java.g4, meant to parse Java 6 compilation units, no longer passes ANTLR (currently 4....
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New
dachristenson
I just bought this book to learn about Android development, and I’m already running into a major issue in Ch. 1, p. 20: “Update activity...
New

Other popular topics Top

Exadra37
Please tell us what is your preferred monitor setup for programming(not gaming) and why you have chosen it. Does your monitor have eye p...
New
AstonJ
We have a thread about the keyboards we have, but what about nice keyboards we come across that we want? If you have seen any that look n...
New
AstonJ
Just done a fresh install of macOS Big Sur and on installing Erlang I am getting: asdf install erlang 23.1.2 Configure failed. checking ...
New
AstonJ
Do the test and post your score :nerd_face: :keyboard: If possible, please add info such as the keyboard you’re using, the layout (Qw...
New
AstonJ
If you are experiencing Rails console using 100% CPU on your dev machine, then updating your development and test gems might fix the issu...
New
PragmaticBookshelf
Learn different ways of writing concurrent code in Elixir and increase your application's performance, without sacrificing scalability or...
New
First poster: AstonJ
Jan | Rethink the Computer. Jan turns your computer into an AI machine by running LLMs locally on your computer. It’s a privacy-focus, l...
New
NewsBot
Node.js v22.14.0 has been released. Link: Release 2025-02-11, Version 22.14.0 'Jod' (LTS), @aduh95 · nodejs/node · GitHub
New
PragmaticBookshelf
Fight complexity and reclaim the original spirit of agility by learning to simplify how you develop software. The result: a more humane a...
New
PragmaticBookshelf
A concise guide to MySQL 9 database administration, covering fundamental concepts, techniques, and best practices. Neil Smyth MySQL...
New

Sub Categories: