wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

johnp
Running the examples in chapter 5 c under pytest 5.4.1 causes an AttributeError: ‘module’ object has no attribute ‘config’. In particula...
New
raul
Hi Travis! Thank you for the cool book! :slight_smile: I made a list of issues and thought I could post them chapter by chapter. I’m rev...
New
raul
Page 28: It implements io.ReaderAt on the store type. Sorry if it’s a dumb question but was the io.ReaderAt supposed to be io.ReadAt? ...
New
herminiotorres
Hi! I know not the intentions behind this narrative when called, on page XI: mount() |> handle_event() |> render() but the correc...
New
jskubick
I’m under the impression that when the reader gets to page 136 (“View Data with the Database Inspector”), the code SHOULD be able to buil...
New
oaklandgit
Hi, I completed chapter 6 but am getting the following error when running: thread 'main' panicked at 'Failed to load texture: IoError(O...
New
s2k
Hi all, currently I wonder how the Tailwind colours work (or don’t work). For example, in app/views/layouts/application.html.erb I have...
New
tkhobbes
After some hassle, I was able to finally run bin/setup, now I have started the rails server but I get this error message right when I vis...
New
dtonhofer
@parrt In the context of Chapter 4.3, the grammar Java.g4, meant to parse Java 6 compilation units, no longer passes ANTLR (currently 4....
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New

Other popular topics Top

AstonJ
We have a thread about the keyboards we have, but what about nice keyboards we come across that we want? If you have seen any that look n...
New
PragmaticBookshelf
Rust is an exciting new programming language combining the power of C with memory safety, fearless concurrency, and productivity boosters...
New
AstonJ
Thanks to @foxtrottwist’s and @Tomas’s posts in this thread: Poll: Which code editor do you use? I bought Onivim! :nerd_face: https://on...
New
Exadra37
I am asking for any distro that only has the bare-bones to be able to get a shell in the server and then just install the packages as we ...
New
New
PragmaticBookshelf
Author Spotlight: VM Brasseur @vmbrasseur We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
PragmaticBookshelf
Programming Ruby is the most complete book on Ruby, covering both the language itself and the standard library as well as commonly used t...
New
AnfaengerAlex
Hello, I’m a beginner in Android development and I’m facing an issue with my project setup. In my build.gradle.kts file, I have the foll...
New
RobertRichards
Hair Salon Games for Girls Fun Girls Hair Saloon game is mainly developed for kids. This game allows users to select virtual avatars to ...
New
mindriot
Ok, well here are some thoughts and opinions on some of the ergonomic keyboards I have, I guess like mini review of each that I use enoug...
New

Sub Categories: