wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

abtin
page 20: … protoc command… I had to additionally run the following go get commands in order to be able to compile protobuf code using go...
New
jeffmcompsci
Title: Design and Build Great Web APIs - typo “https://company-atk.herokuapp.com/2258ie4t68jv” (page 19, third bullet in URL list) Typo:...
New
ianwillie
Hello Brian, I have some problems with running the code in your book. I like the style of the book very much and I have learnt a lot as...
New
yulkin
your book suggests to use Image.toByteData() to convert image to bytes, however I get the following error: "the getter ‘toByteData’ isn’t...
New
simonpeter
When I try the command to create a pair of migration files I get an error. user=> (create-migration "guestbook") Execution error (Ill...
New
herminiotorres
Hi @Margaret , On page VII the book tells us the example and snippets will be all using Elixir version 1.11 But on page 3 almost the en...
New
HarryDeveloper
Hi @venkats, It has been mentioned in the description of ‘Supervisory Job’ title that 2 things as mentioned below result in the same eff...
New
adamwoolhether
When trying to generate the protobuf .go file, I receive this error: Unknown flag: --go_opt libprotoc 3.12.3 MacOS 11.3.1 Googling ...
New
oaklandgit
Hi, I completed chapter 6 but am getting the following error when running: thread 'main' panicked at 'Failed to load texture: IoError(O...
New
taguniversalmachine
Hi, I am getting an error I cannot figure out on my test. I have what I think is the exact code from the book, other than I changed “us...
New

Other popular topics Top

AstonJ
Or looking forward to? :nerd_face:
485 12328 258
New
AstonJ
I’ve been hearing quite a lot of comments relating to the sound of a keyboard, with one of the most desirable of these called ‘thock’, he...
New
PragmaticBookshelf
Tailwind CSS is an exciting new CSS framework that allows you to design your site by composing simple utility classes to create complex e...
New
PragmaticBookshelf
Use WebRTC to build web applications that stream media and data in real time directly from one user to another, all in the browser. ...
New
foxtrottwist
A few weeks ago I started using Warp a terminal written in rust. Though in it’s current state of development there are a few caveats (tab...
New
mafinar
This is going to be a long an frequently posted thread. While talking to a friend of mine who has taken data structure and algorithm cou...
New
AstonJ
If you get Can't find emacs in your PATH when trying to install Doom Emacs on your Mac you… just… need to install Emacs first! :lol: bre...
New
PragmaticBookshelf
Author Spotlight: Peter Ullrich @PJUllrich Data is at the core of every business, but it is useless if nobody can access and analyze ...
New
PragmaticBookshelf
Get the comprehensive, insider information you need for Rails 8 with the new edition of this award-winning classic. Sam Ruby @rubys ...
New
Fl4m3Ph03n1x
Background Lately I am in a quest to find a good quality TTS ai generation tool to run locally in order to create audio for some videos I...
New

Sub Categories: