wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

lirux
Hi Jamis, I think there’s an issue with a test on chapter 6. I own the ebook, version P1.0 Feb. 2019. This test doesn’t pass for me: ...
New
Mmm
Hi, build fails on: bracket-lib = “~0.8.1” when running on Mac Mini M1 Rust version 1.5.0: Compiling winit v0.22.2 error[E0308]: mi...
New
New
jgchristopher
“The ProductLive.Index template calls a helper function, live_component/3, that in turn calls on the modal component. ” Excerpt From: Br...
New
jskubick
I found an issue in Chapter 7 regarding android:backgroundTint vs app:backgroundTint. How to replicate: load chapter-7 from zipfile i...
New
New
ggerico
I got this error when executing the plot files on macOS Ventura 13.0.1 with Python 3.10.8 and matplotlib 3.6.1: programming_ML/code/03_...
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New
gorkaio
root_layout: {PentoWeb.LayoutView, :root}, This results in the following following error: no “root” html template defined for PentoWeb...
New
dachristenson
@mfazio23 Android Studio will not accept anything I do when trying to use the Transformations class, as described on pp. 140-141. Googl...
New

Other popular topics Top

PragmaticBookshelf
Learn from the award-winning programming series that inspired the Elixir language, and go on a step-by-step journey through the most impo...
New
AstonJ
You might be thinking we should just ask who’s not using VSCode :joy: however there are some new additions in the space that might give V...
New
AstonJ
This looks like a stunning keycap set :orange_heart: A LEGENDARY KEYBOARD LIVES ON When you bought an Apple Macintosh computer in the e...
New
Exadra37
Oh just spent so much time on this to discover now that RancherOS is in end of life but Rancher is refusing to mark the Github repo as su...
New
AstonJ
Biggest jackpot ever apparently! :upside_down_face: I don’t (usually) gamble/play the lottery, but working on a program to predict the...
New
PragmaticBookshelf
Author Spotlight: VM Brasseur @vmbrasseur We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
hilfordjames
There appears to have been an update that has changed the terminology for what has previously been known as the Taskbar Overflow - this h...
New
PragmaticBookshelf
Explore the power of Ash Framework by modeling and building the domain for a real-world web application. Rebecca Le @sevenseacat and ...
New
RobertRichards
Hair Salon Games for Girls Fun Girls Hair Saloon game is mainly developed for kids. This game allows users to select virtual avatars to ...
New
mindriot
Ok, well here are some thoughts and opinions on some of the ergonomic keyboards I have, I guess like mini review of each that I use enoug...
New

Sub Categories: