wasshuber

wasshuber

Programming Machine Learning: Help: weird results I don't understand

I encountered something that I can’t explain. Any help, tips, or explanations would be great.

I followed the one hidden layer example with 100 nodes and sigmoid activation function. Works great and I can get to 98.6% accuracy with a learning rate of 1.0, a batch size of 1000, and 100 epochs.

I then decided to exchange the sigmoid activation function with the ReLU. This is not done in the book at this point but it is easy enough to program the ReLU and its derivative. Here is the Python code I used:

def relu(z):
    return np.maximum(0.0,z)
def relu_gradient(z):
    return (z > 0)*1

Works fine as long as one reduces the learning rate which I did reduce to 0.1. It reaches about the same level of accuracy as with the sigmoid. I then did one insignificant change in the gradient of the ReLU. Instead of z > 0 I wrote z >= 0. So the code for the gradient was now:

def relu_gradient(z):
    return (z >= 0)*1

This I thought should not make any difference because how often would z be exactly zero? How often would the weighted sum of all inputs in the floating point format be exactly zero? Perhaps never. Even if it is zero occasionally it should hardly make any big difference. But to my surprise, it makes a profound difference. I can only get to about 95%. Why? Why is there almost 4% difference in accuracy for this insignificant change? There must be something weird happening.

I tried this several times to rule out that somehow the random initialization was unusual. I tried it with different learning rates and different batch sizes. None made any difference in the result. I checked for dead neurons. Found none. If somebody can tell me what is going on here I would really appreciate it.

Most Liked

wasshuber

wasshuber

Turns out it was a bug. Using the nomenclature of the book I was feeding h into the gradient function when I should have fed a into it. With the >= comparison this made all the gradients 1 and thus it acted like the linear activation function. (The linear activation function does produce about 94% accuracy.) Properly using the gradient function produces the expected results. It doesn’t matter if one uses > or >=.

I am happy I found this bug. But this is also part of why your book is so great. Programming it yourself forces one to understand the little details and allows one to change and modify the algorithms at the very core, which leads to much deeper understanding of how this all works.

Here is an insight that my experimentation produced. I tested a bunch of different activation functions including weird piecewise linear ones, periodic ones with sin and cos, combinations thereof etc. It surprised me that many work just as good as ReLU or sigmoid with a single hidden layer. (I intend to extend this experimentation to multiple hidden layers.) For example, it is kind of shocking at first that the absolute-value-function works just as good as ReLU. This kind of makes sense in the biological case. A neuron being a cell would not be completely identical to its neighbor neuron. Neurons in nature would certainly have different activation functions. Perhaps not as different as I experimented with but they would perhaps be noisy and distorted versions of sigmoid or ReLU. It doesn’t matter, it still works fine.

Further, this makes me wonder if perhaps that variation in activation functions in nature is a benefit. I am wondering if folks have tried to make nets where each activation function of each neuron is different. Perhaps that confers a training advantage to the network because not everything behaves in exactly the same way? I will try to explore this question. But first I need to extend the code to allow for multiple hidden layers.

This is one critique I have to make. In my opinion, it would have been better to go further with the code and extend it to multiple hidden layers than to switch to libraries. The point of the book is programming it yourself to allow full unmitigated experimentation. I would have added one or two chapters to extend the code further even if that would have meant leaving out libraries altogether. Numpy should be fast enough to explore multilayer networks on a single average computer.

Where Next?

Popular Pragmatic Bookshelf topics Top

telemachus
Python Testing With Pytest - Chapter 2, warnings for “unregistered custom marks” While running the smoke tests in Chapter 2, I get these...
New
jeffmcompsci
Title: Design and Build Great Web APIs - typo “https://company-atk.herokuapp.com/2258ie4t68jv” (page 19, third bullet in URL list) Typo:...
New
raul
Hi Travis! Thank you for the cool book! :slight_smile: I made a list of issues and thought I could post them chapter by chapter. I’m rev...
New
Mmm
Hi, build fails on: bracket-lib = “~0.8.1” when running on Mac Mini M1 Rust version 1.5.0: Compiling winit v0.22.2 error[E0308]: mi...
New
New
dtonhofer
@parrt In the context of Chapter 4.3, the grammar Java.g4, meant to parse Java 6 compilation units, no longer passes ANTLR (currently 4....
New
New
bjnord
Hello @herbert ! Trying to get the very first “Hello, Bracket Terminal!" example to run (p. 53). I develop on an Amazon EC2 instance runn...
New
SlowburnAZ
Getting an error when installing the dependencies at the start of this chapter: could not compile dependency :exla, "mix compile" failed...
New
roadbike
From page 13: On Python 3.7, you can install the libraries with pip by running these commands inside a Python venv using Visual Studio ...
New

Other popular topics Top

AstonJ
What chair do you have while working… and why? Is there a ‘best’ type of chair or working position for developers?
New
AstonJ
SpaceVim seems to be gaining in features and popularity and I just wondered how it compares with SpaceMacs in 2020 - anyone have any thou...
New
DevotionGeo
I know that -t flag is used along with -i flag for getting an interactive shell. But I cannot digest what the man page for docker run com...
New
New
AstonJ
I have seen the keycaps I want - they are due for a group-buy this week but won’t be delivered until October next year!!! :rofl: The Ser...
New
dimitarvp
Small essay with thoughts on macOS vs. Linux: I know @Exadra37 is just waiting around the corner to scream at me “I TOLD YOU SO!!!” but I...
New
Exadra37
Oh just spent so much time on this to discover now that RancherOS is in end of life but Rancher is refusing to mark the Github repo as su...
New
PragmaticBookshelf
Build highly interactive applications without ever leaving Elixir, the way the experts do. Let LiveView take care of performance, scalabi...
New
New
sir.laksmana_wenk
I’m able to do the “artistic” part of game-development; character designing/modeling, music, environment modeling, etc. However, I don’t...
New

Sub Categories: