dtonhofer

dtonhofer

Functional Programming in Java, Second Edition: Chapter 8: Hard-to-understand "Memoizer" can be made easy-to-understand by adding an "intermediate step" explainer

I had real trouble understanding the “memoizer”, I suppose Java syntax does not help in thinking about what should be a one-liner in Lambda calculus.

But after a couple of hours of thinking, it occurred to me that the “memoizing” code is just the end result of four simple transformations of the non-memoized code.

Suggesting to extend the text to explain it that way.

Here they are, based on the book’s code with some renaming of methods and parameters to make them more meaningful (at least to me):

The code below does not come with runnable code, which I will post separately.

RodCuttingOptimizer.java

package chapter8.rodcutting.book;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.util.stream.IntStream;

class RodCuttingOptimizer {

    private final Map<Integer, Integer> pricingMap;

    public RodCuttingOptimizer(final Map<Integer, Integer> pricingMap) {
        this.pricingMap = Collections.unmodifiableMap(pricingMap);
    }

    // STEP 0:
    // The initial solution as per the book.

    public int maxProfitNaive(final int length) {
        final int profitIfNotCut = pricingMap.getOrDefault(length, 0);
        // dual recursive call!
        final int maxProfitIfCut = IntStream.rangeClosed(1, length / 2)
                .map(left -> maxProfitNaive(left) + maxProfitNaive(length - left))
                .max()
                .orElse(0); // if there is no value because the original IntStream is empty, use 0
        return Math.max(profitIfNotCut, maxProfitIfCut);
    }

    // STEP 1:
    // As above, but indirect, with the recursive descent in
    // maxProfitIndirectInner() calling the function passed as argument #1.
    // In this case, the topmost function.
    // The call basically means "go do your work and call me with a smaller length on recursive descent"

    public int maxProfitIndirect(final int length) {
        return maxProfitIndirectInner(this::maxProfitIndirect, length);
    }

    // STEP 2:
    // As above, but we do not want the *topmost* function to
    // be called on recursive descent, but instead *another function* that we create locally.

    public int maxProfitIndirectDetachedFromTop(final int length) {
        final Function<Integer, Integer> shimFunction = new Function<>() {
            public Integer apply(final Integer length2) {
                // "this" is exactly the "shimFunction"
                return maxProfitIndirectInner(this, length2);
            }
        };
        // kickstart the recursive descent
        return shimFunction.apply(length);
    }

    // STEP 2 WHICH WE CAN'T HAVE
    // We cannot write the above like this in Java as there is no way to
    // put anything into the $MYSELF$ hole, we would need a "Y Combinator" for that (I think)

    /*
    public int maxProfitDoublyIndirect2(final int length) {
        Function<Integer, Integer> shimFunction = (Integer input) -> maxProfitIndirectInner($MYSELF$, length);
        return shimFunction.apply(length);
    }
    */

    // STEP 3:
    // As above, but now we are memoizing with a HashMap local to the "shimFunction".
    // Note that if stream processing actually parallelizes its processing, we are
    // in trouble as the access to the HasMap is not synchronized. So beware!

    public int maxProfitIndirectMemoizing(final int length) {

        final Function<Integer, Integer> shimFunction = new Function<>() {
            private final Map<Integer, Integer> store = new HashMap<>();

            public Integer apply(final Integer length2) {
                if (!store.containsKey(length2)) {
                    int value = maxProfitIndirectInner(this, length2);
                    store.put(length2, value);
                }
                return store.get(length2);
            }
        };

        // kickstart the recursive descent
        return shimFunction.apply(length);
    }

    // STEP 4:
    // As per the book, we can "factor out" the memoizing shim function into an (inner) class.
    // In the book, this is called maxProfit().

    private static class Memoizer {

        public static <T, R> R memoize(final BiFunction<Function<T, R>, T, R> innerFunction, final T input) {

            // An anonymous class implementing an interface!
            // Containing a cache ("store") as a Map<T,R>

            Function<T, R> memoizedFunction = new Function<>() {

                private final Map<T, R> store = new HashMap<>();

                public R apply(final T input) {
                    if (!store.containsKey(input)) {
                        store.put(input, innerFunction.apply(this, input));
                    }
                    return store.get(input);
                }
            };

            return memoizedFunction.apply(input);
        }
    }

    public int maxProfitIndirectMemoizingUsingMemoizer(final int length) {
        // https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html
        // BiFunction<Function<Integer, Integer>, Integer, Integer> biFunction = this::maxProfitIndirectInner;
        return Memoizer.memoize(this::maxProfitIndirectInner, length);
    }

    // The method that uses the "indirect" function.
    //
    // In the book, it is called "computeMaxProfit()"
    // and "indirect" is called "memoizedFunction" (which is not entirely true as this is not
    // properly the memoized function)
    //
    // "maxProfitIndirectInner" can be mapped to a java.util.function.BiFunction
    // that maps the following types and roles:
    //
    // ( <Function<Integer, Integer>  ,   Integer     ) ->    Integer
    //
    // ( [the "indirect function"]    , [rod length]  ) ->  [max profit]
    //
    // In ML notation this would be simpler:
    //
    // ( Integer -> Integer ) ->  Integer -> Integer
    //
    // This function is only "not static" in this example because its context (i.e. "this")
    // contains the "pricingMap", which could also be passed as a separate parameter instead.

    private int maxProfitIndirectInner(final Function<Integer, Integer> indirect, final int length) {
        final int profitIfNotCut = pricingMap.getOrDefault(length, 0);
        // dual recursive call!
        final int maxProfitIfCut = IntStream.rangeClosed(1, length / 2)
                .map(left -> indirect.apply(left) + indirect.apply(length - left))
                .max()
                .orElse(0); // if there is no value because the original IntStream is empty, use 0
        return Math.max(profitIfNotCut, maxProfitIfCut);
    }

}

Where Next?

Popular Pragmatic Bookshelf topics Top

brianokken
Many tasks_proj/tests directories exist in chapters 2, 3, 5 that have tests that use the custom markers smoke and get, which are not decl...
New
mikecargal
Title: Hands-On Rust (Chapter 11: prefab) Just played a couple of amulet-less games. With a bit of debugging, I believe that your can_p...
New
raul
Hi Travis! Thank you for the cool book! :slight_smile: I made a list of issues and thought I could post them chapter by chapter. I’m rev...
New
AndyDavis3416
@noelrappin Running the webpack dev server, I receive the following warning: ERROR in tsconfig.json TS18003: No inputs were found in c...
New
jskubick
I found an issue in Chapter 7 regarding android:backgroundTint vs app:backgroundTint. How to replicate: load chapter-7 from zipfile i...
New
digitalbias
Title: Build a Weather Station with Elixir and Nerves: Problem connecting to Postgres with Grafana on (page 64) If you follow the defau...
New
brunogirin
When installing Cards as an editable package, I get the following error: ERROR: File “setup.py” not found. Directory cannot be installe...
New
taguniversalmachine
It seems the second code snippet is missing the code to set the current_user: current_user: Accounts.get_user_by_session_token(session["...
New
Henrai
Hi, I’m working on the Chapter 8 of the book. After I add add the point_offset, I’m still able to see acne: In the image above, I re...
New
redconfetti
Docker-Machine became part of the Docker Toolbox, which was deprecated in 2020, long after Docker Desktop supported Docker Engine nativel...
New

Other popular topics Top

wolf4earth
@AstonJ prompted me to open this topic after I mentioned in the lockdown thread how I started to do a lot more for my fitness. https://f...
New
New
AstonJ
Do the test and post your score :nerd_face: :keyboard: If possible, please add info such as the keyboard you’re using, the layout (Qw...
New
AstonJ
In case anyone else is wondering why Ruby 3 doesn’t show when you do asdf list-all ruby :man_facepalming: do this first: asdf plugin-upd...
New
PragmaticBookshelf
Build highly interactive applications without ever leaving Elixir, the way the experts do. Let LiveView take care of performance, scalabi...
New
PragmaticBookshelf
Create efficient, elegant software tests in pytest, Python's most powerful testing framework. Brian Okken @brianokken Edited by Kat...
New
hilfordjames
There appears to have been an update that has changed the terminology for what has previously been known as the Taskbar Overflow - this h...
New
PragmaticBookshelf
Author Spotlight: Peter Ullrich @PJUllrich Data is at the core of every business, but it is useless if nobody can access and analyze ...
New
New
PragmaticBookshelf
A concise guide to MySQL 9 database administration, covering fundamental concepts, techniques, and best practices. Neil Smyth MySQL...
New

Latest in Functional Programming in Java, Second Edition

Functional Programming in Java, Second Edition Portal

Sub Categories: