dtonhofer

dtonhofer

Functional Programming in Java, Second Edition: Chapter 8: Hard-to-understand "Memoizer" can be made easy-to-understand by adding an "intermediate step" explainer

I had real trouble understanding the “memoizer”, I suppose Java syntax does not help in thinking about what should be a one-liner in Lambda calculus.

But after a couple of hours of thinking, it occurred to me that the “memoizing” code is just the end result of four simple transformations of the non-memoized code.

Suggesting to extend the text to explain it that way.

Here they are, based on the book’s code with some renaming of methods and parameters to make them more meaningful (at least to me):

The code below does not come with runnable code, which I will post separately.

RodCuttingOptimizer.java

package chapter8.rodcutting.book;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.util.stream.IntStream;

class RodCuttingOptimizer {

    private final Map<Integer, Integer> pricingMap;

    public RodCuttingOptimizer(final Map<Integer, Integer> pricingMap) {
        this.pricingMap = Collections.unmodifiableMap(pricingMap);
    }

    // STEP 0:
    // The initial solution as per the book.

    public int maxProfitNaive(final int length) {
        final int profitIfNotCut = pricingMap.getOrDefault(length, 0);
        // dual recursive call!
        final int maxProfitIfCut = IntStream.rangeClosed(1, length / 2)
                .map(left -> maxProfitNaive(left) + maxProfitNaive(length - left))
                .max()
                .orElse(0); // if there is no value because the original IntStream is empty, use 0
        return Math.max(profitIfNotCut, maxProfitIfCut);
    }

    // STEP 1:
    // As above, but indirect, with the recursive descent in
    // maxProfitIndirectInner() calling the function passed as argument #1.
    // In this case, the topmost function.
    // The call basically means "go do your work and call me with a smaller length on recursive descent"

    public int maxProfitIndirect(final int length) {
        return maxProfitIndirectInner(this::maxProfitIndirect, length);
    }

    // STEP 2:
    // As above, but we do not want the *topmost* function to
    // be called on recursive descent, but instead *another function* that we create locally.

    public int maxProfitIndirectDetachedFromTop(final int length) {
        final Function<Integer, Integer> shimFunction = new Function<>() {
            public Integer apply(final Integer length2) {
                // "this" is exactly the "shimFunction"
                return maxProfitIndirectInner(this, length2);
            }
        };
        // kickstart the recursive descent
        return shimFunction.apply(length);
    }

    // STEP 2 WHICH WE CAN'T HAVE
    // We cannot write the above like this in Java as there is no way to
    // put anything into the $MYSELF$ hole, we would need a "Y Combinator" for that (I think)

    /*
    public int maxProfitDoublyIndirect2(final int length) {
        Function<Integer, Integer> shimFunction = (Integer input) -> maxProfitIndirectInner($MYSELF$, length);
        return shimFunction.apply(length);
    }
    */

    // STEP 3:
    // As above, but now we are memoizing with a HashMap local to the "shimFunction".
    // Note that if stream processing actually parallelizes its processing, we are
    // in trouble as the access to the HasMap is not synchronized. So beware!

    public int maxProfitIndirectMemoizing(final int length) {

        final Function<Integer, Integer> shimFunction = new Function<>() {
            private final Map<Integer, Integer> store = new HashMap<>();

            public Integer apply(final Integer length2) {
                if (!store.containsKey(length2)) {
                    int value = maxProfitIndirectInner(this, length2);
                    store.put(length2, value);
                }
                return store.get(length2);
            }
        };

        // kickstart the recursive descent
        return shimFunction.apply(length);
    }

    // STEP 4:
    // As per the book, we can "factor out" the memoizing shim function into an (inner) class.
    // In the book, this is called maxProfit().

    private static class Memoizer {

        public static <T, R> R memoize(final BiFunction<Function<T, R>, T, R> innerFunction, final T input) {

            // An anonymous class implementing an interface!
            // Containing a cache ("store") as a Map<T,R>

            Function<T, R> memoizedFunction = new Function<>() {

                private final Map<T, R> store = new HashMap<>();

                public R apply(final T input) {
                    if (!store.containsKey(input)) {
                        store.put(input, innerFunction.apply(this, input));
                    }
                    return store.get(input);
                }
            };

            return memoizedFunction.apply(input);
        }
    }

    public int maxProfitIndirectMemoizingUsingMemoizer(final int length) {
        // https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html
        // BiFunction<Function<Integer, Integer>, Integer, Integer> biFunction = this::maxProfitIndirectInner;
        return Memoizer.memoize(this::maxProfitIndirectInner, length);
    }

    // The method that uses the "indirect" function.
    //
    // In the book, it is called "computeMaxProfit()"
    // and "indirect" is called "memoizedFunction" (which is not entirely true as this is not
    // properly the memoized function)
    //
    // "maxProfitIndirectInner" can be mapped to a java.util.function.BiFunction
    // that maps the following types and roles:
    //
    // ( <Function<Integer, Integer>  ,   Integer     ) ->    Integer
    //
    // ( [the "indirect function"]    , [rod length]  ) ->  [max profit]
    //
    // In ML notation this would be simpler:
    //
    // ( Integer -> Integer ) ->  Integer -> Integer
    //
    // This function is only "not static" in this example because its context (i.e. "this")
    // contains the "pricingMap", which could also be passed as a separate parameter instead.

    private int maxProfitIndirectInner(final Function<Integer, Integer> indirect, final int length) {
        final int profitIfNotCut = pricingMap.getOrDefault(length, 0);
        // dual recursive call!
        final int maxProfitIfCut = IntStream.rangeClosed(1, length / 2)
                .map(left -> indirect.apply(left) + indirect.apply(length - left))
                .max()
                .orElse(0); // if there is no value because the original IntStream is empty, use 0
        return Math.max(profitIfNotCut, maxProfitIfCut);
    }

}

Where Next?

Popular Pragmatic Bookshelf topics Top

New
jesse050717
Title: Web Development with Clojure, Third Edition, pg 116 Hi - I just started chapter 5 and I am stuck on page 116 while trying to star...
New
jamis
The following is cross-posted from the original Ray Tracer Challenge forum, from a post by garfieldnate. I’m cross-posting it so that the...
New
rmurray10127
Title: Intuitive Python: docker run… denied error (page 2) Attempted to run the docker command in both CLI and Powershell PS C:\Users\r...
New
nicoatridge
Hi, I have just acquired Michael Fazio’s “Kotlin and Android Development” to learn about game programming for Android. I have a game in p...
New
jskubick
I found an issue in Chapter 7 regarding android:backgroundTint vs app:backgroundTint. How to replicate: load chapter-7 from zipfile i...
New
digitalbias
Title: Build a Weather Station with Elixir and Nerves: Problem connecting to Postgres with Grafana on (page 64) If you follow the defau...
New
jonmac
The allprojects block listed on page 245 produces the following error when syncing gradle: “org.gradle.api.GradleScriptException: A prob...
New
Keton
When running the program in chapter 8, “Implementing Combat”, the printout Health before attack was never printed so I assumed something ...
New
roadbike
From page 13: On Python 3.7, you can install the libraries with pip by running these commands inside a Python venv using Visual Studio ...
New

Other popular topics Top

brentjanderson
Bought the Moonlander mechanical keyboard. Cherry Brown MX switches. Arms and wrists have been hurting enough that it’s time I did someth...
New
AstonJ
Biggest jackpot ever apparently! :upside_down_face: I don’t (usually) gamble/play the lottery, but working on a program to predict the...
New
Maartz
Hi folks, I don’t know if I saw this here but, here’s a new programming language, called Roc Reminds me a bit of Elm and thus Haskell. ...
New
PragmaticBookshelf
Author Spotlight Jamis Buck @jamis This month, we have the pleasure of spotlighting author Jamis Buck, who has written Mazes for Prog...
New
husaindevelop
Inside our android webview app, we are trying to paste the copied content from another app eg (notes) using navigator.clipboard.readtext ...
New
PragmaticBookshelf
Author Spotlight: VM Brasseur @vmbrasseur We have a treat for you today! We turn the spotlight onto Open Source as we sit down with V...
New
DevotionGeo
I have always used antique keyboards like Cherry MX 1800 or Cherry MX 8100 and almost always have modified the switches in some way, like...
New
First poster: bot
zig/http.zig at 7cf2cbb33ef34c1d211135f56d30fe23b6cacd42 · ziglang/zig. General-purpose programming language and toolchain for maintaini...
New
New
AstonJ
This is cool! DEEPSEEK-V3 ON M4 MAC: BLAZING FAST INFERENCE ON APPLE SILICON We just witnessed something incredible: the largest open-s...
New

Latest in Functional Programming in Java, Second Edition

Functional Programming in Java, Second Edition Portal

Sub Categories: